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1 INTRODUCTION

In digital communication, the information being transferred is represented in digital form,

most commonly as binary digits, or bits. This is in contrast to analog information, which takes

on a continuum of values. Information is transferred digitally, but we, humans, consume in-

formation or produce it in analog forms. Why digital?

• A desirable property of a typical storage or communication system is to be be indepen-

dent of the source characteristics, so that a variety of information sources can share

the same communication medium and use the same communication system. Such an

approach will alleviate the need for reinterpretation of the information every time it is

to be transferred from one point in time or space to another.

• Another striking advantage is the prevention of noise accumulation due to regenera-

tion of transferred bits at each recevier in a multi-hop communication scenario.

One of the important concepts of communication theory is the idea of modulation. Mod-

ulation refers to the representation of digital information in terms of analog waveforms that

can be transmitted over physical channels. These bits are translated into symbols using a

bit-to-symbol map, which in this case could be as simple as mapping the bit 0 to the sym-

bol +1, and the bit 1 to the symbol -1. After the bit-to-symbol mapping operation, symbols

go through a shaping function, most of the time an LTI system (filter) to output an analog

waveform to be communicated over the channel.

Analog impulse response of the filtering employed for modulation are often constrained

in the frequency domain. Such constraints arise either from the physical characteristics of
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the communication medium, or from external factors such as government regulation of spec-

trum usage. Thus, it is typical to classify channels, and the signals transmitted over them, in

terms of the frequency bands they occupy.

Apart from necessary fundamental principles of signals and systems, probability and

stochastic processes for understanding the material presented here, modulation is the main

introductory concept to the communication theory. However in order to excel into this con-

cept, we need lay out some background about frequency characterizations of signals and

certain probability principles.

As a final note, I would like to acknowledge Laurence B. Milstein of University of Califor-

nia, San Diego whose graduate class notes have been quite instrumental in writing this short

note. I am sure it is his passion and love for communication theory which inspired many

other researchers around the world as well as myself to read, write and research about this

engineering path.

1.1 PRELIMINARIES

Let us start with Euler’s identity which decomposes a complex exponential into real val-

ued sinusoids,

e± jθ = cosθ± j sinθ (1.1)

This quantity is a special form of a general complex number expressed as z = x+ j y where

x = Re{z} is the real part and y = Im{z} is the imaginary part. The phase of z is defined to be

tan−1 y

x
and the magnitude of z is

√
x2 + y2. The conjugate of z is denoted by z∗ = x − j y .

We can see that e jθ has a unit magnitude and phase θ. Equation (1.1) also leads to following

relationships,

cos(θ) =
e jθ+e− jθ

2
, sin(θ) =

e jθ−e− jθ

2 j
(1.2)

We can also show the following properties to hold for any pair of complex numbers z1 and z2.

(z1 ± z2)∗ = z∗
1 ± z∗

2 (1.3)

(z1z2)∗ = z∗
1 z∗

2 (1.4)

(z1/z2)∗ = z∗
1 /z∗

2 assuming z2 is nonzero. (1.5)

ez∗
= (ez )∗ (1.6)

Communication theory is all about relative geometries of the signals used, which are pre-

dominantly governed by the inner products of signals. For two complex valued k ×1 vectors

s = (s1, s2, . . . , sk ) and r = (r1,r2, . . . ,rk), the inner product is given by

< s,r >=
k∑

i=1

= si r ∗
i = rH s (1.7)

which can also be defined for time dependent functions s(t ) and r (t ) as follows

< s,r >=
∫∞

−∞
= s(t )r ∗(t )d t . (1.8)
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Due to linearity of summing and integration for example, we can easily see relationships

like < a1s1 + a2s2,b1r1 +b2r2 >= a1b∗
1 < s1,r1 > +a2b∗

1 < s2,r1 > +a1b∗
2 < s1,r2 > +a1b∗

2 <
s1,r2 >. Another closely related definition is the energy of a signal which is defined to be the

inner product of the signal with itself, given by

Es = ||s||2 =< s, s >=
∫∞

−∞
= |s(t )|2d t . (1.9)

where ||s|| is the norm of the signal s(t ) and is the square root of the energy of the signal. The

inner product obeys the following relationship

| < s,r > | ≤ ||s|| ||r ||, (1.10)

which is also known as a form of Cauchy-Schwartz inequality. To prove this inequality, let us

define the vector for some scalar c , z = cr + s. Consider

||z||2 = ||cr − s||2 = |c |2||r ||2 −2|c | < s,r >+||s||2 ≥ 0 (1.11)

Let us reexpress this as a quadratic equation f (|c |) = |c |2||r ||2 − 2|c | < s,r > +||s||2, and

simple quadratic algebra yields if f (|c |) ≥ 0 ⇒ f (<s,r>
||r ||2 ) ≥ 0 since f (<s,r>

||r ||2 ) is the minimum of

the function. If we rewrite equation (1.11), we have

||z||2 =−
(< s,r >)2

||r ||2
+||s||2 ≥ 0 ⇒||s||2 ||r ||2 ≥ (< s,r >)2 (1.12)

from which the result follows. It is also easy to see that the equality holds if and only if s(t ) is

some scalar multiple of r (t ) i.e., s(t )= cr (t ).

One of the major operations of linear time invariant systems (LTI) is the convolution. The

convolution of the two signals s(t ) and r (t ) is defined to be of the form,

(s ∗ r )(t )= s(t )∗ r (t )=
∫+∞

−∞
s(u)r (t −u)du (1.13)

which is usually referred as “convolution of s(t ) and r (t ) at time t ". Due to LTI nature, delay or

scalar multiplier operations can be performed before or after convolution operation without

effecting the eventual outcome. The result of convolution gets more interesting when one of

the signals is a delta dirac function i.e.,

(s ∗δ)(u0)=
∫+∞

−∞
δ(u −u0)s(u)du = s(u0) (1.14)

where we used the fact that δ(u −u0) = δ(u0 −u). This result is due to the “sifting" property

of the delta dirac function. Since this results implies that δ(t0)∗ s(t ) = s(t0), it also implies

δ(t − t0)∗ s(t ) = s(t − t0) i.e., the convolution of a signal with a shifted version of the delta

function results in a shifted version of the signal s(t ). The role of the convolution operation

is pretty significant in communication system modeling and implementation.
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Figure 1.1: Impulse train in time and frequency domains.

INDICATOR AND SINC FUNCTIONS There are few functions that are extremely useful in devel-

oping fundamentals of communication theory. One of them is the indicator function which

is defined for a set S in the following way,

IS(x) =
{

1 if x ∈ S

0 otherwise
(1.15)

Similarly, a sinc function is defined as a function of a sinusoidal function as follows,

sinc(x) =
sin(πx)

πx
(1.16)

where sinc(0) = 1 due to the limiting behavior of the function as x tends to 0.

FOURIER SERIES The frequency content of periodic signals can easily be captured using

Fourier series. In other words, every periodic function has a Fourier series representation.

A periodic function p(t ) with period T0 can be represented by an infinite series of exponen-

tial time functions as follows,

p(t )=
∞∑

n=−∞
P [n]e j 2πnt /T0 (1.17)

where the Fourier series coefficients are given by

P [n] =
1

T

∫T /2

−T /2
p(t )e− j 2πnt /T0 (1.18)

and f0 = 1/T0 is the fundamental frequency of the periodic signal. All frequencies in the se-

ries representation are harmonically related; the ratio of two distinct frequencies is a rational

number.

One of the well known periodic functions of interest is the impulse train given by

I T (t )=
∞∑

n=−∞
δ(t −nT0) (1.19)

The Fourier series coefficients for this periodic function can be found as

I T [n] =
1

T

∫T /2

−T /2

∞∑

n=−∞
δ(t −nT0)e− j 2πnt /T0 (1.20)

=
1

T

∫T /2

−T /2
δ(t )e− j 2πnt /T0 d t = 1/T (1.21)
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Thus, we have two different expressions to represent an impulse train,

I T (t )=
∞∑

n=−∞
δ(t −nT0) =

1

T

∞∑

n=−∞
e j 2πnt /T (1.22)

If we take the Fourier transform of both expressions we obtain,

I T ( f )=
∞∑

n=−∞
e− j 2πnT0 f =

1

T

∞∑

n=−∞
δ( f −

n

T0
) (1.23)

which implies that Fourier transform of a periodic impulse train in time domain is a periodic

impulse train in frequency domain.

Let sT (t ) be a time limited function whose support is symmetric around the origin. The

periodic function s(t ) can be obtained by convolving sT (t ) by the impulse train I T (t ) i.e.,

s(t )= sT (t )∗ I T (t )⇔ S( f ) = ST ( f )I T ( f ). Thus, we have

S( f )= ST ( f )×
1

T0

∞∑

n=−∞
δ( f −

n

T0
) =

∞∑

n=−∞

ST (n/T0)

T0
δ( f −

n

T0
) (1.24)

which implies that the Fourier transform of a periodic signal is bound to be discrete. Note also

that as T0 → ∞, the gap between discrete pulses shrinks and disappears i.e., non-periodic

time limited s(t ) has a continuous band unlimited frequency response. We will also see later

that for an arbitrary periodic continuous time function, the Fourier transform consists of im-

pulses (located at the harmonic frequencies) whose areas are the Fourier series coefficients.

This discussion also shows us a way to calculate Fourier series coefficients from the Fourier

transform of the periodic function as T0 →∞.

FOURIER TRANSFORM Fourier transform of a signal (possible complex valued) s(t ) is an in-

vertible transform technique, employed to transform time signal s(t ) to the frequency do-

main representation S( f ) =F(s(t )), given by

S( f )=
∫∞

−∞
s(t )e− j 2π f t d t =< s(t ),e j 2π f t > . (1.25)

Similarly, the inverse Fourier transform is defined to be of the form,

s(t )=
∫∞

−∞
S( f )e j 2π f t d t =< S( f ),e− j 2π f t > . (1.26)

Based on these definitions, let us calculate the Fourier transform of the time domain

square function I[−T /2,T /2](t ),

S( f ) =
∫T /2

−T /2
e− j 2π f t d t =

e− jπ f T −e jπ f T

− j 2π f
=

sin(π f T )

π f
= T sinc( f T ). (1.27)

Similarly, s(t ) = δ(t ) has the Fourier transform S( f ) = 1 due to delta function’s sifting

property. We usually use δ(t ) ⇔ 1 to indicate the Fourier pair for short hand notation for the

rest of our discussion. Some of the basic properties of Fourier transform can be itemized as

follows,
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• if s(t ) ⇔ S( f ), then r (t ) = S(t ) ⇔ R( f ) = s(− f ). This is known as the time-frequency

duality of the Fourier transform operation.

• if s(t ) ⇔ S( f ), then s∗(t ) ⇔ S∗(− f ) and s∗(−t ) ⇔ S∗( f ). This also implies if s(t ) = s∗(t )

i.e., s(t ) is a real valued signal, then S( f ) = S∗(− f ) i.e., their Fourier transforms are

conjugate symmetric of eachother.

• if s(t )⇔ S( f ), then s(t − t0) ⇔ S( f )e− j 2π f t0 and s(t )e j 2π f0t ⇔ S( f − f0).

• if s1(t ) ⇔ S1( f ) and s2(t ) ⇔ S2( f ), then (s1 ∗ s2)(t ) ⇔ S1( f )S2( f ) and s1(t )s2(t ) ⇔ (S1 ∗
S2)( f ).

• if s(t )⇔ S( f ), then s(at )⇔ 1
|a|S(

f

a )

Next, Let us present Parseval’s theorem which plays a crucial role when one talks about

signal energy or power. From above we have s∗(t )⇔ S∗(− f ), first we observe through change

of variables that

s∗(t )=
∫∞

−∞
S∗(− f )e j 2π f t d f =

∫∞

−∞
S∗( f )e− j 2π f t d f (1.28)

Let us consider the inner product

< s1, s2 > =
∫∞

−∞
s1(t )s∗2 (t )d t (1.29)

=
∫∞

−∞

∫∞

−∞
S1( f )e j 2π f t d f

∫∞

−∞
S∗

2 (g )e− j 2πg t d g d t (1.30)

=
∫∞

−∞

∫∞

−∞
S1( f )S∗

2 (g )

∫∞

−∞
e j 2π( f −g )t d t d f d g (1.31)

=
∫∞

−∞

∫∞

−∞
S1( f )S∗

2 (g )δ( f − g )d f d g (1.32)

=
∫∞

−∞
S1( f )S∗

2 ( f )d f (1.33)

= < S1,S2 > . (1.34)

If we set s1(t ) = s2(t ) = s(t ), we obtain the energy of the signal s(t ) (summing of all the instan-

taneous powers over time) as follows

Es = ||s(t )||2 =
∫∞

−∞
|s(t )|2d t =

∫∞

−∞
|S( f )|2d f (1.35)

where we assume Es is finite. This particularly shows the energy conservation principle, after

and before the transform operation.

Exercise 1: If we let s(t )=
∑∞

n=1 an sin( nπt
L ) for all 0 < t < L, then we have

2

L

∫L

0
s2(t )d t =

∞∑

n=1

a2
n . (1.36)

6



Hint: First show that

∫L

0
sin

(
mπt

L

)
sin

(
nπt

L

)
d t =

{
L/2 if n = m

0 Otherwise.
(1.37)

Average power of the signal s(t ) is defined to be of the form

Ps = 〈|s(t )|2〉 = lim
L→∞

1

2L

∫A

−A
|s(t )|2d t (1.38)

A bounded signal s(t ) can either be an energy signal in which Es is finite and Ps = 0 or a

power signal in which Es is infinite and Ps is finite. Suppose that the signal s(t ) passes through

a bandpass filter H ( f ) defined as follows,

H ( f ) =
{

1 if f0 −∆ f /2 < f < f0 +∆ f /2

0 Otherwise.
(1.39)

The instantaneous power or the energy spectral density Es( f0) of s(t ) at frequency f0 is de-

fined to be the energy of the signal at the output of the filter divided by the width of the filter

∆ f as ∆ f tends to zero. It is easy to see that the signal energy at the output is approximately

|S( f )|2∆ f and therefore Es ( f0) = |S( f )|2. Therefore the integral of the energy spectral density

gives us the signal energy. Let sL(t ) denote the signal s(t ) for −L ≤ t ≤ L and zero otherwise,

and SL( f ) the corresponding Fourier transform, then

SL( f ) =
∫∞

−∞
sL(t )e− j 2π f t d t =

∫L

−L
s(t )e− j 2π f t d t (1.40)

Power spectral density for the signal sL(t ) is therefore given by

ΦSLSL
( f ) = lim

L→∞

1

2L
|SL( f )|2 (1.41)

Another popular quantity related to the analysis of signals is the autocorrelation function

which measure how closely the signal s(t ) approximates delayed versions of itself. For a given

delay τ, autocorrelation function of s(t ) is given by

Rs (τ) =
∫∞

−∞
s(t )s∗(t −τ)d t (1.42)

where we note that at τ= 0, i.e., convolution with zero shifted version of the signal itself, we

obtain the inner product of the signal with itself. This is the energy of the signal i.e., Rs (0) = Es .

If we look at the expression (1.41) carefully, we can realize that (using change of variables and

integral algebra) that

ΦSL SL
( f )=

∫∞

−∞
Rs(τ)e− j 2π f τdτ=⇒ Rs(τ) =

∫∞

−∞
ΦSL SL

( f )e j 2π f τd f (1.43)

This implies that we can relate the average energy (power in a unit time) to the power

spectral density as follows,

Es = Rs(0) =
∫∞

−∞
ΦSL SL

( f )d f . (1.44)
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Figure 1.2: Power spectral density of a random process n(t ) changes after a linear filter with

frequency response H ( f ).

Finally, we consider a stochastic process going through a linear filter. In a communication

context, that random process is usually the noise. This is illustrated in Fig. 1.2. Without loss

of generality, we assume the filter system is bounded response and the input random process

is stationary and has a finite mean. Thus, we have

E[n0(t )] =
∫−∞

−∞
h(τ)E[n(t −τ)]dτ (1.45)

= E[n]

∫−∞

−∞
h(τ)dτ= E[n]H (0). (1.46)

Next, let us look at the autocorrelation function of the output process,

Rn0
(t1, t2) =

∫∞

−∞

∫∞

−∞
h(τ1)h(τ2)E[n(t1 −τ1)n(t2 −τ2)]dτ1dτ2 (1.47)

=
∫∞

−∞

∫∞

−∞
h(τ1)h(τ2)Rn(t1 − t2 −τ1 +τ2)dτ1dτ2 (1.48)

which shows that the output process is wide-sense stationary. Let τ= t1 − t2, we have

Rn0
(t1, t2) =

∫∞

−∞

∫∞

−∞
h(τ1)h(τ2)Rn(τ−τ1 +τ2)dτ1dτ2 (1.49)

=
∫∞

−∞

(∫∞

−∞
h(τ1)Rn(τ+τ2 −τ1)dτ1

)
h(τ2)dτ2 (1.50)

which shows that

Rn0
(τ) = Rn(τ)∗h(t )∗h(−t ). (1.51)

Taking the Fourier transform of both sides yield

ΦN0 N0
( f ) =ΦN N ( f )H ( f )H∗( f ) =ΦN N ( f )|H ( f )|2. (1.52)

NYQUIST’S SAMPLING THEOREM In a nutshell, Nyquist’s sampling theorem provides a pre-

scription of an upper bound for the sampling interval required to avoid aliasing. Consider a

signal s(t ) band limited to [−B/2,B/2]. Sampling with period T0 is nothing but the multipli-

cation of s(t ) with I T (t ). In frequency domain this corresponds to

S( f )∗ I T ( f )=
1

T0

∞∑

−∞
S( f −

n

T0
) (1.53)
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Since s(t ) is band limited to [−B/2,B/2], in order not to cause aliasing, 1/B ≥ T0. This implies

the maximum sampling interval is 1/B i.e., we sample at a rate of B , which is also known as

critical frequency. In more formal terms, we have the following theorem if we assume the

band limited signal is critically sampled.

Theorem 1: For any signal s(t ) band limited to [−B/2,B/2] can be described completely

by its samples {s(n/B )} at rate B . Furthermore, s(t ) can be recovered from its samples using

the following interpolation formula:

s(t )=
∞∑

n=−∞
s
(n

B

) sin(2πB
2 (t − n

B ))

2πB
2 (t − n

B )
=

∞∑

n=−∞
s
( n

B

)
sinc(B t −n) (1.54)

BASEBAND AND PASSBAND SIGNALS A signal s(t ) is considered to be baseband if

S( f ) = 0, | f | >W (1.55)

for some W > 0. Similarly, a signal s(t ) is said to be passband if

S( f ) = 0, | f ± fc | >W (1.56)

for some fc >W > 0. These definitions for signals is also applicable to Linear Time Invariant

(LTI) system transfer functions as well. For some class of signals, although they have infinite

bandwidth their most of the energy is contained in a finite frequency band. Using a slight

abuse of notation, previous descriptions can still be used with S( f ) ≈ 0. The following exercise

demonstrates a case in which the bandwidth is defined as the size of an appropriately chosen

interval where most of the energy of the signal lies.

Exercise 1: Let s(t ) = I0,T (t ) be a rectangle shape signal for 0 < t < T , zero otherwise. Let

S( f ) be the Fourier transform of s(t ) and 0 < a ≤ 1 be the fraction of energy contained in the

band [−B ,B ]. Show that a satisfies the following relationship

∫B

0
T sinc2( f T )d f = a/2 (1.57)

and for T = 1, B turns out to be 10.2 for a = 0.99 i.e., 99% and 0.85 for a = 0.9 i.e., 90% energy

containment.

2 COMPLEX BASEBAND REPRESENTATION

2.1 BASEBAND SIGNALS

Communication channels as well as signals used to transmit information are almost al-

ways of passband nature. In otherwords, user narrow band signals are often transmitted us-

ing some type of carrier modulation. However, passband signal processing is a challenging

task because it requires much higher sampling rates to discritize/digitize the analog infor-

mation for processing. Therefore, it maybe profoundly practical to express real-valued pass-

band waveforms as a complex-valued baseband signal. This transformation allows many
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modern communication systems to implement sophisticated signal processing algorithms

digitally on complex baseband representations of real-valued pass band signals. Such a trans-

formed representation enables a modular transceiver design as well. In otherwords, all the

processing and algorithms are developed for baseband signals, independent of the physical

frequency band used for the actual communication link.

Let us assume a real-valued bandpass signal s(t ) has a Fourier transform S( f ) which con-

sists of a positive spectrum component S+( f ) and a negative spectrum component S−( f ). In

other words, S+( f ) the spectrum of the resulting analytic signal s+(t ) is defined as

S+( f ) =F{s+(t )}= 2u( f )S( f ) (2.1)

where u(x)1 is the unit step function expressed as

u(x)=






1 if x > 0

1/2 if x = 0

0 if x < 0

(2.2)

Before finding a closed for expression for s+(t ), let us observe the following equivalence

between the unit step function and sign function,

u(x)=
1

2
+

1

2
sgn(t ) (2.3)

which implies that the inverse Fourier transform of 2u( f ) can be found using linearity and

duality as

F{2u( f )} = δ( f )+
(

j

π f

)
(2.4)

where F{sgn(t )} = 1/ jπ f and δ( f )= δ(− f ).

Using inverse Fourier transform, the analytic signal can be found as follows,

s+(t )= F−1{S+( f )} = F−1{2u( f )S( f )} (2.5)

= F−1{2u( f )}∗F−1{S( f )} (2.6)

=
(
δ( f )+

(
j

π f

))
∗ s(t ) (2.7)

= s(t )+ j
1

πt
∗ s(t ) (2.8)

= s(t )+ j sH (t ) (2.9)

where sH (t ) = s(t )∗1/πt is called the Hilbert transform of s(t ). The complex baseband rep-

resentation of s(t ), denoted as sb(t ), can be obtained by left shifting and scaling the analytic

signal s+(t ). In otherwords, the spectrum Sb( f ) =F{sb( f )} can be derived from S+( f ) using

Sb( f ) =
1
p

2
S+( f + fc ) (2.10)

1Here we use a dummy variable x so that the same function can be used for both in frequency and in time.
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where fc is the carrier frequency assuming that s(t ) is obtained through modulating a base-

band signal using a carrier. The complex baseband representation sb(t ) can be found by

taking inverse Fourier transform of Sb( f ),

sb(t )=F−1{Sb( f )} =
1
p

2
F−1{S+( f + fc )} =

1
p

2
s+(t )e− j 2π fc t =

1
p

2

(
s(t )+ j sH (t )

)
e− j 2π fc (2.11)

This equation can be rewritten as,

s(t )+ j sH (t ) =
p

2sb(t )e2 jπ fc t (2.12)

to see that s(t ) =
p

2Re{sb(t )e2 jπ fc t }. Since sb(t ) is complex valued in general, it can be ex-

pressed as in terms of a real and an imaginary components,

sb(t )= r (t )+ j i (t ) (2.13)

where r (t )=Re{sb(t )} and i (t )= Im{sb(t )}. This leads to a different definition of the passband

signal s(t ). Thus, any passband signal s(t ) can be rewritten as in the following form,

s(t )=
p

2r (t )cos(2π fc t )−
p

2i (t )sin(2π fc t ) (2.14)

where r (t ) and i (t ) are also sometimes referred as inphase and quadrature signal compo-

nents. The complex baseband representation sb(t ) can also be expressed in polar form by

defining the envelope signal e(t ) and the phase signal θ(t ) as follows,

e(t )= |sb(t )| =
√

r 2(t )+ i 2(t ), θ(t ) = arctan
i (t )

r (t )
. (2.15)

Using sb(t ) = e(t )e jθ(t ) and s(t )=
p

2Re{sb(t )e2 jπ fc t }, we obtain yet another expression for

the passband signal s(t ) as follows,

s(t )=
p

2e(t )cos(2π fc t +θ(t )) (2.16)

Exercise 3: Suppose that r (t ) and i (t ) components are real valued low pass signals. The

corresponding passband signal s(t ) is obtained through an operation called modulation as

follows,

s(t )=
p

2r (t )cos(2π fc t )−
p

2i (t )sin(2π fc t ) (2.17)

The objective of the demodulator is to extract r (t ) and i (t ). Show that r (t ) and i (t ) has the

following relations to s(t ).

r (t )=
1
p

2

[
s(t )cos(2π fc t )+ sH (t )sin(2π fc t )

]
(2.18)

i (t )=
1
p

2

[
sH (t )cos(2π fc t )− s(t )sin(2π fc t )

]
(2.19)

Let us also calculate the energy of the baseband representation of s(t ). We start with the

definition of the energy of s(t ),

Es =
∫∞

−∞
s2(t )d t =

∫∞

−∞
|S( f )|2d f (2.20)
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and recognizing that

S( f ) =
p

2

∫∞

−∞
Re{sb(t )e2 jπ fc t }e− j 2π f t d t (2.21)

=
1
p

2

∫∞

−∞
(sb(t )e2π f t + s∗b (t )e− j 2π f t )d t (2.22)

=
1
p

2

[
Sb( f − fc )+S∗

b (− f − fc )
]

(2.23)

Plugging equation 2.23 in place of s(t ), the energy expression becomes

Es =
1

2

∫∞

−∞

∣∣Sb( f − fc )+S∗
b (− f − fc )

∣∣2
d f =

∫∞

−∞
|Sb( f )|2d f =

∫∞

−∞
|sb(t )|2d t (2.24)

where frequency shift and conjugation operation does not change the energy content of the

signal sb(t ) and cross terms disappear because we assume that bandwidth of Sb( f ) is usually

much smaller than carrier frequency fc i.e., Sb( f − fc )Sb(− f − fc ) = 0 and S∗
b

( f − fc )S∗
b

(− f −
fc ) = 0. This shows that the energy of the complex baseband representation is identical to the

corresponding passband signal s(t ). This derivation also explains the
p

2 term we have been

using in this section.

2.1.1 BASEBAND CHANNELS

The complex baseband representation of channels or linear systems are pretty similar

to that of signals except few minor but important changes. A bandpass channel with the

impulse response h(t ) and corresponding frequency response H ( f ) has one sided frequency

response H+( f ) defined as,

H+( f ) = 2u( f )H ( f ) (2.25)

where the time domain representation h+(t ) is simply the inverse Fourier transform of H+( f ).

However, the definition of the complex baseband representation is slightly different and given

by

Hb( f ) =
1

2
H+( f + fc ) (2.26)

where the constant term is 1/2 instead of 1/
p

2. Using these definitions and assuming that

h(t ) is real valued impulse response i.e., H ( f ) = H∗(− f ) , we can obtain

H ( f ) = Hb( f − fc )+H∗
b (− f − fc ) (2.27)

from which we find by taking the inverse Fourier transform

h(t )= hb(t )e j 2π fc t +h∗
b (t )e− j 2π fc t = 2Re{hb(t )e2 jπ fc t } (2.28)
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2.1.2 TRANSMISSION OF A PASSBAND SIGNAL THROUGH A PASSBAND CHANNEL

One of the fundamental questions of this section is whether linear filtering in the pass-

band has any equivalence in linear filtering in the complex baseband. It turns out there is

such an equivalence and it is perfectly fine to do the linear filtering operation in the complex

baseband. To show this, let us assume r (t ) to be the output of linear filter s(t ) with h(t ). We

have,

R( f ) = S( f )H ( f ) (2.29)

=
1
p

2

(
Sb( f − fc )+S∗

b (− f − fc )
)(

Hb( f − fc )+H∗
b (− f − fc )

)
(2.30)

=
1
p

2

(
Sb( f − fc )Hb( f − fc )+S∗

b (− f − fc )H∗
b (− f − fc )

)
(2.31)

=
1
p

2

(
Rb( f − fc )+R∗

b (− f − fc )
)

(2.32)

which means that all the linear filtering operations can be done in the complex baseband and

yet the actual result for the passband can be obtained through simple transformation.

2.2 RANDOM PROCESSES AND NOISE

Random processes usually serve very useful for characterization of noise, interference,

and the input-output relationship of certain class of communication channels. A random

process, also known as stochastic process, is a family of random variables„ indexed by a pa-

rameter t from an indexing set T . For each experiment outcome ω∈Ω, we assign a measure

X that depends on t

X (t ,ω) t ∈T ,ω ∈Ω (2.33)

where t usually represents time that can be either discrete or continuous. For example, if

t is continuous we often denote the random process X (t ) and at each time t ,X (t ) becomes

a random variable. In otherwords, it is clear that for a fixed t , X (t ,ω) is a random variable

and for a fixed ω, X (t ,ω) is a realization. The statistical properties of a random process is

completely characterized by the collection of joint cumulative distribution function of the

set of random variables

{X (t1), X (t2), . . . , X (tn)} (2.34)

for any set of time samples {t1, t2, . . . , tn} and any n. Sometimes, a complete specification of

a random process may not possible. Instead moments of time samples are used to partially

specify it. One of the important measures is autocorrelation function, defined as the corre-

lation between the two time samples X (t1) and X (t2) i.e., RX (t1, t2) = E[X (t1)X ∗(t2)]. For real

random processes, RX (t1, t2) is symmetric. Similarly, autocovariance function can be defined

as follows,

Cx (t1, t2) = E[(X (t1)−E[X (t1)])(X (t2)−E[X (t2)])∗] (2.35)

= RX (t1, t2)−E[X (t1)]E[X ∗(t2)] (2.36)
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In many random processes that we will consider in communication systems, the statistics

do not change over time. A random process is called mth order stationary if joint cdf of any

m time samples is independent of the time origin i.e.,

[X (t1), X (t2), . . . , X (tm)] ∼ [X (t1 +τ), X (t2 +τ), . . . , X (tm +τ)] (2.37)

If we impose this condition for any m > 0, the process is called strictly stationary, which

is usually very strong requirement. A random process X (t ) is called wide sense stationary

(WSS) if the following properties hold,

E[X (t )] = m ∀t (2.38)

RX (t1, t2) = RX (t2 − t1) ∀t1, t2 (2.39)

from which we note that the conditions of WSS is more relaxed than that of strict stationarity.

Note that RX (0) = E[X (t )2] is the power of the process and is positive. Furthermore, RX (τ)

is an even function and attains its maximum at τ = 0. Finally, if a Gaussian process is WSS,

it is also strictly stationary. Thus, a Gaussian process can be specified by only knowing the

common mean m and the covariance CX (τ). The random process X (t ) is cyclostationary

with repsect to time interval T if it is statistically indistinguishable

Our final note about random processes is the concept of ergodicity. A quantity that can

be obtained through measurements is the ensemble average. The estimate of the mean value

of X (t ) is given by

m̂X (t )=
1

N

N∑

i=1

X (t , wi ) (2.40)

where ωi is the outcome of the i th random experiment. If the process is strictly stationary,

the mean value should not change over time. Therefore, the natural question would be to ask

whether the mean can be estimated based on realizations over time. In other words, if we

define the time average as follows,

ET [X (t )]=
1

2T

∫T

−T
X (t ,ω)d t (2.41)

our question would be “when does the time average should converge to the ensemble aver-

age?". If a random process is ergodic, its time and ensemble averages converge.

Exercise 4: Suppose that Xn = X (t ,ω) is a discrete stationary random process where Xns

can be interpreted as a sequence of i.i.d. random variables with mean E[Xn] = m. Show that

X (t ,ω) is ergodic.

Example 1: Let us consider a random modulated information signal

s(t )=
∞∑

−∞
a[n]p(t −nT ) (2.42)

where a[n] is the random information sequence (which may be complex valued) and p(t ) is

the signal shaping pulse and nonzero only for [0,T ]. Let us show how to compute the PSD of

s(t ). The first operation is to window the signal for an interval of [0, N T ] to obtain,

sN (t )=
N−1∑

n=0

a[n]p(t −nT ) (2.43)
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Next, let us take the Fourier transform of the windowed signal,

SN ( f ) =F{sN (t )} =
N−1∑

n=0

a[n]P( f )e− j 2π f nT =P( f )
N−1∑

n=0

a[n]e− j 2π f nT (2.44)

The estimate of the power spectral density is given by

|SN ( f )|2

N T
=

|P( f )|2|
∑N−1

n=0 a[n]e− j 2π f nT |2

N T
(2.45)

=
|P( f )|2

∑N−1
n=0

∑N−1
n=0 a[n]a∗[m]e− j 2π f (n−m)T

N T
(2.46)

If we take the limit N →∞, we obtain

lim
N→∞

|SN ( f )|2

N T
=

|P( f )|2

T
lim

N→∞

∑N−1
n=0

∑N−1
n=0 a[n]a∗[m]e− j 2π f (n−m)T

N
(2.47)

Furthermore, if we assume the time average of a[n]a∗[m] is zero i.e., source information

samples are completely uncorrelated, we shall simplify the equation and rewrite

lim
N→∞

|SN ( f )|2

N T
=

|P( f )|2

T
lim

N→∞

∑N−1
n=0 |a[n]|2

N
=

|P( f )|2

T
σ2

a (2.48)

where σ2
a is the time average of |a[n]|2. We observe that the PSD of the modulated source

symbols scales as the magnitude squared of the spectrum of the signal shaping (modulating)

function. If we delay s(t ) by an integer multiple of the pulse length kT , we also observe that

s(t −kT )=
∞∑

−∞
a[n]p(t − (n +k)T )=

∞∑

−∞
a[n −k]p(t −nT ) (2.49)

from which we can deduce that if the source information sequence is stationary, s(t ) and its

delay version are statistically indistinguishable. However, this is only true if the delay hap-

pens an integer multiple of T . Thus, a modulated waveform with a stationary input sequence

{a[n]} is cyclostationary process.

A random process is baseband/passband if its PSD is baseband/passband. Similar to de-

terministic signals, complex envelope can be defined for passband random processes. Let

X (t ) be a passband random process with the complex envelope Xb(t ). Their spectral rela-

tionship can be shown to be of the form,

ΦX ( f ) =
1

2
(ΦXb

( f − fc )+Φ
∗
Xb

(− f − fc )) (2.50)

Let us explore more about passband and baseband relationship through one of the most

popular random processes taking place in communication systems: noise process. We pri-

marily assume a narrow band WSS noise process n(t ) with zero mean and PSD ΦN N ( f ) 6= 0

only if fc−B/2 ≤ | f | ≤ fc+B/2. Equivalent complex baseband signal nb (t )= x(t )+ j y(t ) where
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x(t ) and y(t ) are real valued baseband noise components. Passband noise can be expressed

as

n(t ) =
p

2Re{nb(t )e j 2π fc t } (2.51)

=
p

2x(t )cos{2π fc t }−
p

2y(t )sin{2π fc t } (2.52)

Let us look at the autocorrelation function of n(t ). We define φX X (τ) = E[x(t )x(t +τ)],

φY Y (τ) = E[y(t )y(t +τ)] and φX Y (τ) = E[x(t )y(t +τ)]. Using these definitions, we have

φN N (t , t +τ) = E[n(t )n∗(t +τ)] (2.53)

= (φX X (τ)+φY Y (τ))cos(2π fcτ) (2.54)

+(φX X (τ)−φY Y (τ))cos(2π fc (2t +τ)) (2.55)

−(φY X (τ)−φX Y (τ))sin(2π fcτ) (2.56)

−(φY X (τ)+φX Y (τ))sin(2π fc (2t +τ)) (2.57)

where we used the appropriate trigonometric identities. Since n(t ) is narrowband WSS pro-

cess, its autocorrelation function should only depend on τ. Thus, this implies φX X (τ) =
φY Y (τ) and φY X (τ) =−φX Y (τ). Using these results, we finally arrive at

φN N (τ) = 2φX X (τ)cos(2π fcτ)−2φY X (τ)sin(2π fcτ) (2.58)

If we also compute the autocorrelation function of nb(t ), we obtain

φNb Nb
(τ) = E[nb(t )n∗

b (t +τ)] =φX X (τ)+φY Y (τ)− jφX Y (τ)+ jφY X (τ) (2.59)

= 2φX X (τ)+2 jφY X (τ) (2.60)

implying that we have φN N (τ) = Re{φNb Nb
(τ)e j 2π fcτ}. Note here that if x(t ) and y(t ) are un-

correlated, φX Y (τ) = 0 for all τ, i.e., φNb Nb
(τ) = 2φX X (τ) is real valued. The PSD of n(t ) can

therefore be computed in terms of PSD of nb(t ) as follows

ΦN N ( f ) =
∫+∞

−∞
Re{φNb Nb

(τ)e j 2π fcτ}e− j 2π f τdτ (2.61)

=
1

2

∫+∞

−∞
(φNb Nb

(τ)e j 2π fcτ+φ∗
Nb Nb

(τ)e− j 2π fcτ)e− j 2π f τdτ (2.62)

=
1

2

(
ΦNb Nb

( f − fc )+ΦNb Nb
(− f − fc )

)
(2.63)

In addition to the relationship φY X (τ) = −φX Y (τ) due to stationarity condition, we also

observe that

φY X (τ) = E[y(t )x(t +τ)] = E[y(t ′−τ)x(t ′)] =φX Y (−τ) (2.64)

together which implies

φX Y (τ) =−φX Y (−τ) (2.65)

and that φX Y (0) = 0, φX Y (τ) is an odd function of τ. Now using the equation (2.63) at fc = 0,

we have

F{Re{φNb Nb
(τ)}} =

1

2

(
ΦNb Nb

( f )+ΦNb Nb
(− f )

)
(2.66)
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Figure 2.1: Power spectral density of a narrow band WSS white noise process n(t ).

Furthermore if we assume x(t ) and y(t ) are uncorrelated, φNb Nb
(τ) is real and hence

ΦNb Nb
( f ) =

1

2

(
ΦNb Nb

( f )+ΦNb Nb
(− f )

)
⇒ΦNb Nb

( f ) =ΦNb Nb
(− f ) (2.67)

that the complex baseband representation of n(t ) is symmetric around f = 0. The WSS noise

process is called “white" if in the frequency of interest i.e., fc −B/2 ≤ | f | ≤ fc +B/2 the PSD is

relatively flat and equals N0/2. The PSD of white noise n(t ) is illustrated in Fig. 2.1.

Exercise 5: Show that the complex baseband representation of the passband white noise

has PSD ΦNb Nb
( f ) = N0 for | f | ≤ B/2 and zero otherwise and an autocorrelation function

φNb Nb
(τ) = N0

sin(πBτ)
πτ

.

If we let B → ∞, we can show that ΦNb Nb
(τ) → N0 and φNb Nb

(τ) → N0δ(τ). The noise

process with a flat spectrum for all frequencies is called white noise. In short, we have the

following sequence of relations,

ΦNb Nb
( f ) is symmetric around f = 0 ⇒φX Y (τ) = 0, ∀τ⇒φNb Nb

= 2φX X = 2φY Y (2.68)

which implies that autocorrelation function of nb(t ) is real valued, x(t ) and y(t ) are uncorre-

lated and therefore φX X =φX X = N0

2 δ(τ).

As we have already discussed, the complex baseband representation of an overall commu-

nication system is quite useful for both simulation and analysis of passband communication

systems. This typical scenario is illustrated in Fig. 2.2, now including the WSS white noise

process.

3 SIGNAL SPACE REPRESENTATIONS

Signals can be represented as arrays of coefficients or vectors over a set of appropriate

basis. In fact, it is usually necessary and convenient to represent signals as sums of or-

thogonal/orthonormal signals. Let us assume we have N orthonormal functions { fi (t ), i =
1,2, . . . , N } i.e.,

< fn(t ), fm(T )>=
∫∞

−∞
fn(t ) f ∗

m(t ) =
{

1 if n = m

0 if n 6= m
(3.1)
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Figure 2.2: Equivalent baseband form of a typical communication channel.

The signal s(t ) can be represented by a linear combination of these functions expressed

as

s(t )=
N∑

i=1

si fi (t ) (3.2)

with coefficients {si , i = 1,2, . . . , N }. Of course this formation assumes the signal s(t ) to be

contained in the signal space spanned by fi (t )s. Otherwise, we can only find an approxima-

tion by choosing the appropriate set {si }N
i=1

. Through straighforward algebra, it can be shown

that the optimal si s (optimal in mean square sense) turn out to be of the form

si =< s(t ), fi (t )>=
∫∞

−∞
s(t ) f ∗

i (t )d t , i = 1,2, . . . , N (3.3)

which is nothing but the projection of s(t ) onto each and every orthonormal basis function.

In general, we are provided with the set of signal waveforms instead of the orthonormal basis

functions. Thus, we should be able to go from given signal waveforms to basis functions.

In turns out that there is a nice workaround to that called Gram-Schmidt (GM) orthogo-

nalization procedure of Linear algebra. Let us assume we are given M signal waveforms

{si (t ), i = 1,2, . . . , M } with the corresponding energies {Ei , i = 1,2, . . . , M }. Outline of the or-

thogonalization procedure is as follows.

• f1(t ) = s1(t )p
E1

• Let f ′
2 = s2(t )−< s2(t ), f1(t )> f1(t ), f2 =

f ′
2p
E2

• . . .

• Let f ′
k
= sk (t )−

∑k−1
i=1 < sk(t ), fi (t )> fi (t ), fk = f ′

kp
Ek

• The procedure ceases after all si (t )s are processed.

We note that number of non-zero orthonormal basis functions is ≤ M i.e., some of the fi (t )

could simply be zero if they depend on the f1(t ), . . . , fi−1(t ). Also, these basis functions are

not unique and can change depending on the order of processing signals. Suppose that GM

process results in N orthonormal basis functions, then each signal sk (t ) can be expressed in

terms of these basis functions as follows,

sk(t ) =
N∑

i=1

ski fi (t ), k = 1,2, . . . , M (3.4)
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Figure 3.1: Given two signals to show GM procedure.

with coefficients

ski =< sk (t ), fi (t )>=
∫∞

−∞
sk(t ) f ∗

i (t )d t , i = 1,2, . . . , N (3.5)

Since orthonormal basis functions have unit energy, we have two alternative ways to com-

pute signal energies given by

Esk
=

∫∞

−∞
|sk (t )|2d t =

N∑

i=1

|ski |2 (3.6)

Example 2: Let us consider two signals as shown in Fig. 3.1. Note that the energy of s1 is

Es1
=

∫∞

−∞
|s1(t )|2d t = 2.25 (3.7)

The first step of GM gives us the first orthonormal basis function as follows

f1(t )= s1(t )/
p

2.25 (3.8)

Next, the inner product of s2(t ) with f1(t ) can be calculated,

< s2(t ), f1(t )>=
∫∞

−∞
s2(t ) f ∗

1 (t )d t =
1

p
2.25

(
1

2
−

1

4
+1

)
=

5

4
p

2.25
(3.9)

Thus,

f ′
2(t )= s2(t )−

5

4
p

2.25

s1(t )
p

2.25
= s2(t )−

5

9
s1(t ) (3.10)

and we obtain the following piecewise function

f ′
2(t )=






−1/18 for 0 ≤ t < 1

7/9 for 1 ≤ t < 2

4/9 for 2 ≤ t < 3

(3.11)
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whose energy is ≈ 0.8056 and finally f2(t )≈ f ′
2(t )/0.8056.

Exercise 6: Let us consider two different signals sk(t ) and sm(t ). Moreover let sbk (t ) and

sbm(t ) be their complex baseband representations, respectively. Show that

∫∞

−∞
sm(t )s∗k (t )d t =

∫∞

−∞
Re{sbm(t )s∗bk (t )}d t (3.12)

Exercise 7: Now consider signal space representation of sk (t ), sm(t ), sbk (t ) and sbm(t )

and denote them as sk , sm , sbk and sbm . Show that

sk s
T
m =Re{sbk s

T
bm} (3.13)

where T represents the transpose operation.

Let also define the Euclidian distance between two passband signals sk(t ) and sm(t ) as

follows

d (sk(t ), sm(t )) =

√∫∞

−∞
|sk (t )− sm(t )|2d t (3.14)

= ||sk − sm || =
√

||sk ||2 +||sm ||2 −2sk s
T
m (3.15)

=
√
||sbk ||2 +||sbm ||2 −2Re{sbk sbm }T (3.16)

= ||sbk − sbm || (3.17)

=

√∫∞

−∞
|sbk (t )− sbm(t )|2d t (3.18)

which means that that the Euclidean distance of the passband signals is identical to that of

the corresponding baseband signals.

4 DIGITAL MODULATION

Suppose a sequence of binary digits an is to be transmitted over the physical channel. The

main purpose of the modulator is to map every k bits to one of the M = 2k symbols/waveforms

{si (t ), i = 1,2, . . . , M }. If the transmitted waveforms si (t ) depends only on the current k bits,

the modulation is called memoryless. Furthermore, if the underlying mapping is linear, the

modulation is named linear, otherwise non-linear.

4.1 M -ARY PULSE AMPLITUDE MODULATION (MPAM)

In this type of modulation, the amplitude of the signal is used to carry the information.

Thus, it is also known as “amplitude shift keying" in literature. The MPAM passband wave-

form is represented by

sm(t )=
p

2Am g (t )cos(2π fc t ) (4.1)

where Am = (2m−1−M )d ,m = 1,2, . . . , M are the M possible amplitudes and d is half the min-

imum symbol distance. We will later see that the minimum distance between two symbols
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Figure 4.1: Signal space represenations of MPAM signals for M = 1,2. Also shown are the bi-

nary representation of symbols. This representation is usually known as mapping.

We used gray mapping in this example where the adjacent symbols’ binary repre-

sentations differ at most 1 bit location.

of a given modulation has a major impact on the error probability of information delivery.

The pulse shaping function g (t ) is a real-valued signal of duration T . From its definition, the

equivalent baseband representation of a MPAM signal is sbm = Am g (t ).

Let us consider a spacial case when M = 2. The set of all possible signals contain,

s1(t )=−
p

2d g (t )cos(2π fc t ) (4.2)

s2(t )=
p

2d g (t )cos(2π fc t ) (4.3)

from which we immediately realize that s1(t ) =−s2(t ). Due this property, this modulation is

called antipodal signalling. Signal energy can be calculated to be

Em = A2
m

∫T

0
|g (t )|2d t = A2

mEg = d 2Eg (4.4)

In order to find a basis function, we define sm(t ) by its energy to obtain

f (t )=
√

2

Eg
g (t )cos(2π fc t ) (4.5)

If we express s1(t ) and s2(t ) in terms of f (t ) we get

s1(t ) =−d
√

Eg s2(t ) = d
√

Eg (4.6)

4.2 M -ARY PHASE SHIFT KEYING (M PSK)

If the information is transmitted using the phase of the modulating signal, it is called

phase shift keying. The MPSK passband waveform is represented by

sm(t ) =
p

2g (t )cos(2π fc t +Θm) (4.7)

=
p

2g (t )cos(Θm)cos(2π fc t )−
p

2g (t )sin(Θm)sin(2π fc t ) (4.8)
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f2(t)

−
√
Eg

√
Eg

Figure 4.2: Signal space represenation of 8PSK signal.

where

Θm = 2π(m −1)/M , m = 1,2, . . . , M (4.9)

denotes the information conveying phase of the carrier. Note that all the signals of the PSK

modulation has the same energy Eg . Then, the passband PSK signal can be represented by

sm(t ) = sm1(t ) f1(t )+ sm2(t ) f2(t ) (4.10)

with the orthonormal basis functions given by

f1(t )=
√

2

Eg
g (t )cos(2π fc t ) (4.11)

f2(t ) =−
√

2

Eg
g (t )sin(2π fc t ) (4.12)

The signal space representation is given by

sm =
[√

Eg cos(Θm)
√

Eg sin(Θm)
]T

(4.13)

Finally, the euclidian distance between two signals of MPSK is given by

||sm − sn|| =
√∣∣∣

√
Eg e jΘm −

√
Eg e jΘn

∣∣∣
2

(4.14)

=
√

Eg (e jΘm −e jΘn )(e− jΘm −e− jΘn ) (4.15)

=
√

2Eg (1−Re{e j (Θm−Θn )}) (4.16)

=
√

2Eg (1−cos(2π(m −n)/M ) (4.17)

from which we can deduce the minimum Euclidian distance between two MPSK signals to

be
√

2Eg (1−cos(2π/M ) = 2
√

Eg sin(π/M ) (4.18)
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4.3 M -ARY QUADRATURE AMPLITUDE MODULATION (M QAM)

Note that with MPSK signalling, inphase and quadrature components are interrelated to

eachother such that the amplitude of the signals are the same. Relaxing this constaint gives

us MQAM signalling given by,

sm(t )=
p

2am g (t )cos(2π fc t )−
p

2bm g (t )sin(2π fc t ) (4.19)

where m = 1, . . . , M and (cos(2π fc t ),sin(2π fc t )) pair are referred as quadrature carriers. Note

that half of log2 M bits are mapped to am and the other half of bits are mapped to bm . By

recognizing the complex equivalent envelope being (am + j bm)g (t ), the energy of sm(t ) can

be calculated as
∫T

0
|sm |2d t = |am + j bm |2

∫T

0
|g (t )|2d t = (a2

m +b2
m)Eg (4.20)

Similar to previous arguments, the signal space representation is given by

sm =
[√

Eg am

√
Eg bm

]T

(4.21)

using the same basis function derived for MPSK signalling. Finally, the euclidian distance

between two signals of MQAM is given by

||sm − sn|| =
√

Eg

∣∣am + j bm −an − j bn

∣∣2
(4.22)

=
√

Eg

∣∣(am −an)+ j (bm −bn)
∣∣ (4.23)

=
√

Eg

√
(am −an)2 + (bm −bn)2 (4.24)

As you might have noticed, we have made no attempt so far pertaining to the particular

choice of (am ,bm) pair for the specification of sm . It is general practice to assume equidistant

signals i.e., am ,bm ∈ {±d ,±3d , . . . ,±(M −1)d } in which case the minimum distance between

constituent signals is going to be 2d
√

Eg .

4.4 M -ARY FREQUENCY SHIFT KEYING (M FSK)

MFSK is an orthogonal (multi-dimensional) modulation scheme whose passband expres-

sion can be given by

sm(t ) =

√
2Es

Ts
cos(2π( fc +m∆ f )t ), m = 1,2, . . . , M (4.25)

where sm(t ) ∈ [0,Ts ] and Es is the energy of the signal sm(t ). For two MFSK signals sn(t ) and

sm(t ), the correlation of the two shall give us

=
2Es

Ts

∫Ts

0
cos(2π( fc +m∆ f )t )cos(2π( fc +n∆ f )t )d t (4.26)

=
Es

Ts

∫Ts

0
cos(2π(m −n)∆ f t )d t (4.27)

=
Es

Ts

sin(2π(m −n)∆ f Ts )

2π(m −n)∆ f
(4.28)
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s1

s2

s3 = −s1

s4 = −s2
M = 2

Figure 4.3: Biorthogonal signal representation using M = 2.

which is zero only if ∆ f Ts = k/2 for k = {±1,±2, . . . }. Thus, the smallest separation that results

in M orthogonal signals is ∆ f = 1/2T . From bandwidth efficiency perspective that is what is

usually chosen.

If we select ∆ f = 1/2T , all M signals become orthogonal. Therefore they are indeed basis

function with a proper normalization (to make it orthonormal) i.e.,

fm(t )=
√

2

T
cos(2π fc t +πmt /T ) (4.29)

which results in a signal representation for 1 ≤ i ≤ M

si = [0 0. . .0
√

Es 0. . . 0 0]; (4.30)

whose i th entry is
p

Es . We can realize that the minimum Euclidian distance between any

signal points is
p

2Es .

Additionally, we can add the set {−sm(t )} to the set of M orthogonal signals {sm(t )} to

create 2M biorthogonal signal set. In this case the distance between signals is either 2
p

E orp
2E . An example for M = 2 is shown in Fig. 4.3.

Exercise 8: Consider a set of M orthogonal signals {sm(t )} and define the mean of the

signal set to be

s =
1

M

M∑

m=1

sm (4.31)

We can realize that this set of signals has non-zero mean. To remove it, we generate another

set of signals given by

s′m = sm −s (4.32)

First show that the set of signals {s′m} has zero mean. Next, show that each signal has energy

Es (1−1/M ). This is interesting because These waveforms require less energy than orthogonal

waveforms to achieve the same minimum Euclidean distance (you can simply verify that).

Finally show that the correlation of the two distinct signals from this set is nonzero and equals

to −1/(M −1).
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4.5 M -ARY DIFFERENTIAL PHASE SHIFT KEYING (DPSK)

In a differential phase shift keying, bits are mapped to the difference of two consecutive

phases instead of phases themselves. In other words at time k , a phase difference level is

selected depending on the transmitted symbol, i.e., ∆Θ[k]. The absolute value of the trans-

mitted value can be found to be,

Θ[k]=Θ[k −1]+∆Θ[k] (4.33)

Note that the information is carried through the phase differences. This leads to a simpler

receiver architecture i.e., the detection can be performed based on the phase difference of

two waveforms of the consecutive symbol intervals. This modulation type is a non-coherent

version of the MPSK modulation.

4.6 MINIMUM SHIFT KEYING (MSK)

MSK is in fact a special case of the continuous phase frequency shift keying (CPFSK) in

which the parameter, defined as the modulation index, equals a constant value. Since MSK

has all the desirable properties of CPFSK and is easier to analyze (less sophisticated receiver

architecture), we shall start by describing it and its interesting relationship with respect to

FSK and QPSK modulation formats. Main motivation behind MSK (and hence CPFSK) is to

come up with a more spectrally efficient modulation format by observing that frequency and

phase changes between two consecutive different symbol transmissions are abrupt.

Let us start with a minor variation of 4PSK or also known as QPSK called, Offset QPSK

or OQPSK . The signal representation of OQPSK is exactly same as the one given for MPSK

with M = 4 earlier. The difference between QPSK and OQPSK is in the alignment of in-

phase and quadrature bit streams. If the symbolling period is T , each components will have

bitstreams sampled at 1/2T to be modulated. Thus, QPSK may introduce ±π/2 or π phase

changes at every 2T . This sharp jumps in the waveform leads to side lobe elevation and hence

increasing the out-of-band radiation. On the other hand OQPSK has one of the bit streams

shifted by T to eliminate the phase change of π. Two important features of OQPSK is its

constant envelope signaling and smaller side lobes of its frequency response. Introduction

of OQPSK suggests that further suppression of out-of-band interference might be possible if

the phase changes can completely be eliminated i.e., constant envelope modulation schemes

with continuous phase might be needed.

MSK can be thought as a special case of OQPSK where g (t ) is a sinusoidal pulse instead

of a rectangular shape. We have the MSK signal expressed as

s(t )= aI (t )cos(
πt

2T
)+aQ(t )sin(

πt

2T
) (4.34)

where aI (t ) =+1,−1,−1,+1 and aQ (t )=+1,−1,+1,+1 are 2T long stream of bits as shown as

a example in Fig. 4.4 (a) and (c). Fig. 4.4 (b) and (d) show how the waveform changes when

modulated with carries. We can observe that the quadrature component aQ(t ) is shifted right

by T relative to the inphase component aI (t ). The composite signal s(t ), the addition of Fig.

4.4 (b) and (d), is shown in Fig. 4.4 (e).
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Figure 4.4: Representation of MSK symbols [1].

Note that using trigonometric identities, the equation (4.34), can be written as

s(t )= cos(2π fc t +bk (t )
πt

2T
+βk (t )) (4.35)

where bk(t ) =−aI (t )aQ(t ) and βk (t ) = (1−aI (t ))π/2. Observing Fig. 4.4, we notice that MSK

waveform is a constant envelope as desired. Additionally, the phase is continuous at bit tran-

sitions. Equation 4.35 can be interpreted as an FSK signal whose frequency can be varied

from fc −1/4T to fc +1/4T with phase changes of 0 or π. This leads to a frequency variation

of 1/2T . From our previous discussion of FSK, we can notice that 1/2T is the minimum fre-

quency separation that allows FSK signals to be orthogonal. This is indeed why this modula-

tion scheme is named “minimum shift keying". Overall, MSK can be both viewed as OQPSK

with sinusoidal pulse weighting or as C PF SK with a frequency separation of 1/2T .

The spectrum of MSK has lower sidelobes than that of QPSK and OQPSK . This makes

MSK extremely spectrum efficient modulation scheme. However MSK has a bigger main-

lobe, suggesting that MSK may not be a good modulation scheme for narrow band com-

munication links. MSK has also other special properties which make them quite industry

standard. For example, MSK has simple demodulation and synchronization circuits [1]. Ad-

ditionally, spectal properties of MSK can be improved by shaping the data pulses further. For

example input symbols can be applied a Gaussian filtering before MSK modulation. This

scheme is adopted by GSM operations.
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5 DEMODULATION (SIGNAL RECOVERY ) FOR DIGITAL TRANSMISSION

5.1 PRELIMINARIES

In a reception scenario, the amplification or the attenuation of the received waveform

leads to amplification as well as the attenuation of the transmitted waveform and the noise

together. The parameter of interest is therefore the ratio of the signal power to the power of

the undesired noise in the received waveform. This ratio is well known by the name signal-

to-noise ratio, abbreviated as S/N or SN R .

In a filtering process, the input SN R can be improved at the output of the filter. This ratio

can be expressed as

∆SN R =
SN Rout

SN Ri n
(5.1)

5.2 MATCHED FILTER

There are two major operations conducted upon the received signal. Analog receivers

(such as ones that are used with AM, FM, etc) typically aimed at reconstructing the transmit-

ted waveform as closely as possible, while the digital receivers attempt to “pull" the signal

out of the background noise without respecting the original waveform shape. In other words,

they try to maximize the output SNR without regard to preserving the shape of the original

signal.

The matched filter is a linear system that maximizes the output SN R . Here, the SN R is

defined as the power ratio between a signal (meaningful information) and the background

noise (undesired signal). A block diagram of the matched filter is roughly shown in Fig. 5.1.

The output SNR is given by

γSNR =
s2

0(T )

n2
0(T )

=
∣∣∫∞

−∞S( f )H ( f )e j 2π f T d f
∣∣2

∫∞
−∞ |H ( f )|2ΦN N ( f )d f

(5.2)

where the denominator is the variance of the output noise process. We wish to choose H ( f )

so as to maximize equation (5.2). However, this is about finding an optimal function rather

than finding an optimal value. A solution to this problem can be given using the Cauchy-

Schwartz’s inequality which can be given for all functions f (x) and g (x) as follows,

∣∣∣∣

∫∞

−∞
f (x)g∗(x)d x

∣∣∣∣
2

≤
∫∞

−∞
| f (x)|2d x

∫∞

−∞
|g (x)|2d x (5.3)

s(t) + n(t) s0(T ) + n0(T )
H(f)

Figure 5.1: System diagram of a matched filter.

27



∫ T

0
dt

s(t) + n(t)
s0(T ) + n0(T )

s(t)

T

Figure 5.2: System diagram of a Correlator.

where the inequality can be achieved if f (x) = cg (x) for some constant c . Let g (x) = S∗( f )p
ΦN N ( f )

and f (x) = H ( f )
√

ΦN N ( f )e j 2π f T using this inequality, we rewrite the numerator as follows,

∣∣∣∣

∫∞

−∞
S( f )H ( f )e j 2π f T d f

∣∣∣∣
2

=

∣∣∣∣∣

∫∞

−∞

S( f )
√

ΦN N ( f )
H ( f )

√
ΦN N ( f )e j 2π f T d f

∣∣∣∣∣

2

(5.4)

≤
∫∞

−∞
|H ( f )|2ΦN N ( f )d f

∫∞

−∞

|S( f )|2

ΦN N ( f )
d f

Combining this, equation (5.2) can be rewritten as,

γSNR ≤
∫∞

−∞

|S( f )|2

ΦN N ( f )
d f (5.5)

Therefore, an H ( f ) can be seeked to achieve the upper bound. Yet, we know that upper

bound is achievable if

H ( f )
√

ΦN N ( f )e j 2π f T = c
S∗( f )

√
ΦN N ( f )

(5.6)

which implies for some constant c ,

H ( f )= ce− j 2π f T S∗( f )

ΦN N ( f )
(5.7)

If we assume a constant noise spectrumρ (like a white noise), using inverse Fourier trans-

form, we have the time domain expressions

h(t )= c ′s∗(T − t ) (5.8)

where c ′ = c ×ρ. Since c ′ is a dummy variable, it can be ignored for simplicity. Thus, we have

the following relationship between the input and output,

s0(t )+n0(t )= [s(t )+n(t )]∗h(t ) (5.9)

in other words,

s0(t )+n0(t )=
∫T

0
[s(τ)+n(τ)]s(T − (t −τ))dτ (5.10)
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∫ T

0
dt

s(t) + n(t)

s(t)

s0(t) + n0(t)

T

Decision

Th

x̂
1 if x̂ > Th

0 if x̂ < Th

Figure 5.3: System diagram of a Baseband Communication System.

and at time t =T (sampling at time T ), we have

s0(t )+n0(t )=
∫T

0
[s(τ)+n(τ)]s(τ)dτ (5.11)

This shows the equivalence of a matched filter to the receiver system shown in Fig. 5.2. What

this system does is nothing but correlating the original signal with the received signal and

sampling the output signal. In other words, the receiver is finding the projection of the re-

ceived signal in the direction of the transmitted signal. Due to inherent alignment of the

system towards receiving s(t ), the output SNR is maximized.

5.3 PERFORMANCE OF BASEBAND TRANSMISSION

There are two distinct demodulation paradigms. First and the most popular one is “Co-

herent (synchronous) demodulation/detection". In this modulation paradigm, perfect car-

rier and phase synchronization is assumed at the receiver. The second one is “Noncoherent

demodulation" which is usually achieved simple methods like envelope detection. Nonco-

herent systems usually does not require a carrier and phase regeneration in order to accu-

rately demodulate the incoming signal.

In a typical synchronous demodulation scenario, the received waveform that passes though

the analog front end goes through a band pass filter to reject out-of-band noise. Next, the in-

coming waveform is multiplied by a cosine of the carrier frequency. The resultant waveform

goes though a low pass filter in order to obtain the original transmitted waveform. After the

carrier multiplication, the final operations resembles to base band operations. Let us explore

the performance of a simple baseband transmission using synchronous optimal receiver ar-

chitectures. We can change Fig. 5.2 slightly to obtain Fig. 5.3 for our performance calcula-

tions. We assume the channel noise to be a bandpass white Gaussian noise with a two sided

power spectral density. Note that the integrator is nothing but a low pass filter. The signal is

assumed to pass through the lowpass filter without any clear distortion.

After low pass filtering and sampling received signal is s0(T )+n0(T ) where s0(t ) is a bi-

nary valued function (either −A1 representing “0" bit or A2 representing “1" bit value) and

n0(t ) is white Gaussian noise with variance σ2. The general problem of communication is to

transmit binary information to the receiver side ideally without error. However, due to noise

the reception process is never perfect. One of the problems regarding this process is to set the

optimal threshold to minimize the the error probability. There are two possibilities for error

to occur:
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• A symbol 0 is transmitted, but the decision turns out to be 1.

• A symbol 1 is transmitted, but the decision turns out to be 0.

Apparently, the conditional probabilities of error, given that symbol 0 or 1 was transmitted

can be expressed as

Pe|0 =
1

σ
p

2π

∫∞

Th
exp

{
−

(n + A1)2

2σ2

}
dn (5.12)

Pe|1 =
1

σ
p

2π

∫Th

−∞
exp

{
−

(n − A2)2

2σ2

}
dn (5.13)

The average probability of error can be found by averaging over the a priori probabilities

p0 and p1 of transmitting symbols 0 and 1, respectively.

Pe (Th) = p0Pe|0 +p1Pe|1

=
p0

σ
p

2π

∫∞

Th
exp

{
−

(n + A1)2

2σ2

}
dn +

1−p0

σ
p

2π

∫Th

−∞
exp

{
−

(n − A2)2

2σ2

}
dn (5.14)

So we choose Th∗ such that average error probability is minimized. We set

dPe (Th)

dTh
= 0 (5.15)

Using the Leibnitz rule of differentiation2and equation (5.13), we can obtain

dPe (Th)

dTh
=−

p0

σ
p

2π
exp

{
−

(Th+ A1)2

2σ2

}
+

1−p0

σ
p

2π
exp

{
−

(Th− A2)2

2σ2

}
= 0 (5.17)

This implies that

1−p0

p0
= exp

{
−

(Th∗+ A1)2 − (Th∗− A2)2

2σ2

}
(5.18)

= exp

{

−
2Th∗(A1 + A2)+ A2

1 − A2
2

2σ2

}

(5.19)

from which we deduce

Th∗ =−
σ2

A1 + A2
ln

(
1−p0

p0

)
+

A2
2 − A2

1

2(A1 + A2)
(5.20)

Note that if A1 = A2 = A and p0 = p1 = 0.5, the optimal threshold Th∗ = 0 as expected. If

we further assume z = n+B
σ , we shall have

d z =
dn

σ
=⇒ dn =σd z. (5.21)
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Figure 5.4: System diagram of a Baseband Communication System.

Then, if we let B = A1 we can simply write down

Pe|0 =
1

σ
p

2π

∫∞

(Th∗+A1)/σ
exp

{
−

z2

2

}
σd z =

1
p

2π

∫∞

(Th∗+A1)/σ
exp

{
−

z2

2

}
d z (5.22)

= Q((Th∗+ A1)/σ) (5.23)

where

Q(x) =
1

p
2π

∫∞

x
exp

{
−

z2

2

}
d z (5.24)

is the well known Q error function used frequently for evaluating error performance of vari-

ous modulation schemes. Similarly, we have Pe|1 =Q(−(Th∗− A2)/σ), Therefore,

Pe (Th∗) = p0Q((Th∗+ A1)/σ)+p1Q(−(Th∗− A2)/σ) (5.25)

= p0Q((Th∗+ A1)/σ)+p1 −p1Q((Th∗− A2)/σ) (5.26)

For example BPSK signaling with p0 = p1 = 0.5 and Th∗ = 0, the average probability of

symbol/bit error is given by Q(A/σ). Finally, we make note of the important bounds for Q(x)

function as follows,

1
p

2πx

(
1−

1

x2

)
e−x2/2 <Q(x) <

1
p

2πx
e−x2/2 (5.27)

2Let I (λ) =
∫b(λ)

a(λ)
f (x;λ)dx be the continuous function parameterized by λ, then

d I (λ)

dλ
=

db(λ)

dλ
f (b(λ);λ)−

da(λ)

dλ
f (a(λ);λ)+

∫b(λ)

a(λ)

∂ f (x;λ)

∂λ
dx (5.16)
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Figure 5.5: Coherent FSK demodulation. The two BPFs are non-overlapping in frequency

spectrum.

where the upper bound is usually is not tight for large x. Instead, the following provides much

better upper bound on Q(x) function

Q(x)≤
1

2
e−x2/2 (5.28)

Let us consider the coherent detection of binary FSK signalling. The receiver architecture

for M = 2 case is shown in Fig. 5.5. Let us assume the signal is sent on the carrier fi ,0 ≤ i ≤
M−1 i.e., si (t )=

p
2Es /Ts cos(2π fi t ). At the output of each LPF, there will remain a noise term

and only the i th branch will have the signal term. Thus, the output test statistics would be

y =
√

2Es /Ts +n1(t )−n2(t ) (5.29)

Note that noises in the two channels are independent, if their spectra are non-overlapping.

We also note that noise variance add, and hence the overall noise process is Gaussian with

variance 2σ2. Therefore the symbol error rate can simply be found as

Q

(√
Es

Tsσ2

)

(5.30)

To be continued...

32



REFERENCES

[1] S. Pasupathy, “Minimum Shift Keying: A Spectrally Efficient Modulation," IEEE Com-

mun. Mag., vol. 17, no. 7, pp. 14âĂŞ22, July 1979.
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