
CLASS NOTES 2: INTRODUCTION TO CODING THEORY

Finite fields and Linear codes

Suayb S. Arslan

“Although this may seem a paradox, all exact science is dominated by the idea of approximation." R. Bertrand.
Version 0.1 – October 2013

Our previous discussion was on the general code constructions. Coding bounds that are
developed previously apply to any code that has a block length of n symbols and information
length of k symbols. However, we have not given any particular construction and/or map-
ping between message symbols to coded symbols as of yet. In otherwords, the question of
practical construction of channel codes has not been addressed. In order for these codes to
find application in real life, codes with good distance properties should be devised. In ad-
dition, low complexity designs are of significant interest to the electronic chip designers. In
this section, we will try to concentrate on a subclass of codes, called linear codes. We will later
narrow down our attention to even smaller subclasses of linear codes, called cyclic codes and
cover their interesting properties that lead to practical code constructions/implementations.
In order for reader to digest the material, the document will begin by giving background infor-
mation about finite fields, linear spaces/subspaces through resorting to algebra fundamen-
tals, before describing the elegant linear code constructions based on these mathematical
principles.

1 FINITE FIELDS

Linear codes are conventionally defined over the elements of Galois Fields. A Galois Field
with parameter q , denoted as GF (q), is a finite set of elements on which two major oper-
ations, addition and multiplication are defined. In order to satisfy the following axioms of
field, q must be a prime number of a power of a prime number.

• Closure ∀a,b ∈GF (q), a +b ∈GF (q) and ∀a,b ∈GF (q), ab ∈GF (q)

1

• Commutativity ∀a,b ∈GF (q), a +b = b +a and ∀a,b ∈GF (q), ab = ba

• Associativity ∀a,b,c ∈GF (q), (a+b)+c = a+(b+c) and ∀a,b,c ∈GF (q), (ab)c = a(bc)

• Identity ∀a ∈GF (q),∃e ∈GF (q), a +e0 = a and ∀a ∈GF (q),∃e1 ∈GF (q), ae1 = a

• Inverse ∀a ∈GF (q),∃(−a) ∈GF (q), a+(−a) = e0 and∀a ∈GF (q),∃a−1 ∈GF (q), a(a−1) =
e1

• Distributivity ∀a,b,c ∈GF (q), a(b + c) = ab +ac .

As can be noticed, these set of axioms implicitly define the subtraction and division as
well over the elements of GF (q). Since q is prime, GF (p) is referred to as prime field which
has the elements {0,1,2, . . . , q −1}. Since for a,b ∈ GF (q), a +b ∈ GF (q) and ab ∈ GF (q), we
define (a + b) mod q and ab mod q in order to stay in the same field after addition and
multiplication operations.

Definition 1: A primitive element α of GF (q) is an element such that every field element
except zero can be expressed as a power of α.

For example, 2 is a primitive element of GF (5) under modular arithmetic operations.
Given this definition, we can check that 3 is also a primitive element of the same field. In
order to construct the extension field GF (qm), we need to resort to polynomial algebra. Ad-
dition and multiplication of polynomials over GF (q) is defined as in the real number system
except the computations for coefficients of the polynomials are performed according to cor-
responding definitions of addition and multiplication of GF (q). An irreducible polynomial
cannot be factorized to polynomials over GF (q).

Definition 2: Period of a polynomial f (x) is defined as the solution to the following opti-
mization problem

per (f (x)),min
e

f (x)|(xe −1) (1.1)

where a|b means a divides b without any reminder.

Definition 3: A primitive polynomial that can generate the extension field GF (qm) is an
irreducible polynomial of degree m (also known as prime polynomial in the literature) whose
period is qm −1.

Let p(x) = ∑m
i=0 pi xi be a primitive polynomial over GF (q) with pm = 1, and let α ∈

GF (q) be a root of p(x). The root of the primitive polynomial is known as the primitive
element of the extension field GF (qm). We have p(α) = ∑m

i=0 piα
i = 0 which implies that

αm =−∑m−1
i=0 piα

i . Therefore for any qm −1 > s > m, αs can be expressed as a polynomial of
degree less than m, i.e.,

αs =
m−1∑
i=0

ciα
i (1.2)

2

where ci ∈ GF (q). This simply means that the elements of the extension field GF (qm) =
{0,α0,α1, . . . ,αqm−2} has polynomial representations of degree less than m. The coefficients of
these polynomials define the vector representations of the field elements. Since p(x)|xqm−1−
1 and α is a root of p(x), then α|xqm−1 −1. This implies αqm−1 = 1. The following theorem
establishes the relationship between the elements of the GF (q) and the polynomial xq−1.

Theorem 1: All set of zeros of the polynomial xq−1 is given by the non-zero elements of
GF (q).

PROOF: Let us denote the field elements as GF (q) = {0,β1,β2, . . . ,βq−1}. For any non-zero
element β ∈ GF (q)− {0}, we have a representation β = αs for some integer s, where α is the
primitive element of GF (q). Then, we have

βq−1 = (αs)q−1 = (αq−1)s = 1s = 1. (1.3)

Hence, β is a zero of xq−1 − 1. Since we have q − 1 non-zero elements of the field, and
by the fundamental theorem of algebra, the polynomial must have xq−1 − 1 has the roots
{β1,β2, . . . ,βq−1}, i.e., xq−1 −1 =∏q−1

i=1 (x −βi). �

Let us construct the extension field GF (23) using a primitive polynomial of the form
x3 + x +1 over GF (2). Let α be a root and therefore α3 =α+1. Using this relationship, the el-
ements of GF (23) can be represented by polynomial as shown below. Similarly, addition and
multiplication tables can be computed. The construction of these tables are left as exercise.

Table 1.1: Elements of GF (23) in polynomial and binary vector forms.

Power Polynomial Binary
α0 1 (0,0,1)
α1 α (0,1,0)
α2 α2 (1,0,0)
α3 α+1 (0,1,1)
α4 α2 +α (1,1,0)
α5 α2 +α+1 (1,1,1)
α6 α2 +1 (1,0,1)

From basic algebra on polynomials, remember that xn − 1 can be factored into p irre-
ducible polynomial components, i.e.,

xn −1 = f1(x) f2(x) . . . fp (x) (1.4)

Also remember from Theorem 1, we have xqm−1 −1 =∏qm−1
j=1 (x −β j). If we set n = qm −1, we

have

xqm−1 −1 = f1(x) f2(x) . . . fp (x) =
qm−1∏

j=1
(x −β j) (1.5)

3

which implies that each polynomial fi (x) can be represented in GF (qm) as a product of a sub-
set of linear terms. Note here that each βi is a root of exactly one of the fi (x). This irreducible
polynomial is called the minimal polynomial of βi .

For instance let us consider our previous example and the extension field GF (23). We
have the following factorization

x7 −1 =(x −1)(x3 + x +1)(x3 +x2 +1) (1.6)

=(x −α0)[(x −α1)(x −α2)(x −α4)][(x −α3)(x −α6)(x −α5)] (1.7)

Minimal polynomial
Elements of GF(8)
(polynomial form)

Elements of GF(8)
(power form)

x −1 1 α0

x3 + x +1 α, α2 and α2 +α α, α2 and α4

x3 +x2 +1 α+1, α2 +1 and α2 +α+1 α3, α6 and α5

Definition 4: The elements of GF (8) {α, α2, α4} are defined to be conjugates of eachother
with respect to the base field GF (2). They share the same minimal polynomial x3 + x +1.

From this simple example, one can deduce that if f (x) is the minimal polynomial of β,
then it is also the minimal polynomial of the conjugate set {β,βq ,βq2

, . . . ,βqr−1
}, where r is the

smallest integer such that βqr =β.Since the elements of the conjugate set are the roots of the
minimal polynomial f (x), we have the following expression

f (x) = (x −β)(x −βq)(x −βq2
) . . . (x −βqr−1

) (1.8)

Here the exponent of the conjugate set are called the cyclotomic cosets. In other words,
the cyclotomic coset of the element β is given by {1, q, q2, . . . , qr−1}. For our example, we have
three cyclotomic cosets, namely {0}, {1,2,4} and {3,5,6}. Apparent from our definition that
elements in the same cyclotomic coset are the roots of the same minimal polynomial.

Exercise 1: Consider the extension field GF (9) with the base field GF (3). Let α be the
primitive element of GF (9). Find the conjugate set for α. What is the corresponding minimal
polynomial?

Hint: Note that x2 +x +2 is an irreducible polynomial over GF (3).

2 LINEAR ALGEBRA BASICS AND HAMMING CODES

A general codebook construction can be arbitrary. However, codes constructed that way
may require hard work for defining the encoding and decoding structures to be useful in real

4

world applications. A subclass of codes is linear codes which has some basic properties that
prove useful to define, understand and implement them efficiently. Linear codes are defined
over alphabets which are finite fields i.e. Ωq = Fq , finite field with q elements.

Let x = (x0, x1, . . . , xk−1) ∈ Fk
q and y = (y0, y1, . . . , yk−1) ∈ Fk

q be vectors of length k, where
xi , yi ∈ Fq for 1 ≤ i ≤ k −1. We define x+y and xy as the componentwise addition and multi-
plications over Fq , respectively. A scalar a is defined to be equivalent to a vector where each
component is a. The set V is said to be a k-dimensional linear space if for all x,y ∈ V, the
finite field axioms are satisfied. A set S ⊆ V is a linear subspace if it is closed under addition
and scalar multiplication operations. For example, the set of all 3−bit tuples form a linear
space V where the subset {000,001,010,011} is a linear subspace of V.

A k- dimensional linear space can be specified by a set of basis vectors AV = {v0, . . . ,vk−1}
such that any element of V can be defined in terms of these basis vectors. Basis vectors are not
unique but for a set of vectors to define a basis set, the elements of the set must be mutually
independent and the cardinality of the set must be equal to k, i.e., |AV | = k. Since {v0, . . . ,vk−1}
are mutually independent,

a0v0 +a1v1 +·· ·+ak−1vk−1 = 0 (2.1)

implies that {a0 = 0, a1 = 0, . . . , ak−1 = 0}. For example, {001,010,100} is a set of basis vectors
for the space defined by all 3− bit tuples.

The null space of a k-dimensional linear space V, denoted as Vc , is defined by all the
vectors vc of length k such that

∀v ∈ V,vvc = 0 where vc = {vc
0 , . . . , vc

k−1}, vc
i ∈ Fq (2.2)

Exercise 2: Show that Vc is a linear space.

Linear spaces, defined by the basis vectors, are conventionally represented by matrices
in which the columns of the matrix are the basis vectors of the linear space. This definition
is analogous to the linear codes and their generator matrices. A linear block code C of length
n is defined to be a subspace of Fn

q . Therefore, a linear code of length n and dimension k is

denoted as (n,k) code and the encoder bijectively maps the elements of Fk
q to the elements of

the subspace C ⊆ Fn
q . Assuming that C is specified by the basis vectors {g0,g1, . . . ,gk−1} each

of length n, generator matrix G of a (n,k) linear block code C is defined by a k×n matrix over
Fq whose rows are the basis vectors, in other words,

G = (
g0 g1 0 . . . 0 gk−1

)T
n×k

where (.)T is the transpose operation.

Therefore, the linear code C is defined by a matrix multiplication mG where m = {m0, m1,
. . . , mk−1}, mi ∈ Fq . We could have alternatively defined G to be a n×k matrix whose columns
are gi ,0 ≤ i ≤ k −1. Thus, the code C by is either the column or row space of G. We will use

5

both definitions of the generator matrix interchangeably throughout. The null space of the
code C , denoted as C c is also a linear space with the set of basis functions {h0,h1, . . . ,hn−k }
where hi is a vector of length n over Fq . Similarly, we can define a n−k×n parity check matrix
H using the basis vectors as the rows,

H = (
h0 h1 0 . . . 0 hn−k−1

)T
n×n−k

Exercise 3: Show that HG = 0n−k×k .

Theorem 2: Let H be a parity check matrix of a linear code C. The minimum distance of
the code C is d if H has d linearly dependent columns and any 1 ≤ ν≤ d −1 column selections
results in mutually independent set of vectors.

PROOF: Left as an exercise.

Theorem 3: If G = [Ik |P] is a generator matrix for a linear code C. Then, H = [−P T |In−k] .

PROOF: Let c ∈C , then we have Hc T = HmGT = HGT mT = (−PT +P)mT = 0. �

2.1 SOME BASIC LINEAR CODES

Let F2 be our base field, and (n,k) linear code will have n-bit long block length that is
mapped from a k-bit long message block. One of the basic and early codes of practical im-
portance was the parity check code which can detect one error in a block of n bits. Parity
check code has the following parity check matrix,

H = (
1 1 1 . . . 1 1

)
1×n

Using Theorem 3, we can obtain the generator matrix G = [Ik |1T] were 1 is the all-one row
vector. Even-parity check code is (n,n−1) linear code with minimum distance 2. G generates
a systematic codeword in which the last bit is given by

∑k
i=0 mi where m = {m0, . . . ,mk−1}. For

decoding such a code, first the syndromes are computed by multiplying the received word
with the parity check matrix of the code. In otherwords, the decoder simply computes the
sum of all the symbols of the received word r, i.e., s =∑n−1

i=0 ri . If the sum (syndrome s) is zero,
no error is detected, otherwise an odd number of errors are detected in r.

Exercise 4: Think about the parity check matrix for odd-parity code.

Exercise 5: Show that (n,n −1,2) even-parity code has all the vectors in Fn
2 of even ham-

ming weight.

One of the earliest, well-known linear codes is Hamming code. Hamming codes are de-
fined by their parity check matrices and are able to correct single bit error defined over GF (2).

6

A conventional Hamming code assume a r ×2r −1 parity check matrix where columns are bi-
nary representation of numbers 1, . . . ,2r −1. Therefore, Hamming code is a (2r −1,2r −1−r,3)
code for r ≥ 2 defined over GF (2). Consider the following Hamming code example for r = 3:

H =
 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1


3×7

If the received vector r = c+ e is corrupted by a single error i.e., e has weight one, then
the syndrome computation will result in any one of the columns of H. Thus, the decoding
operation is simple that once the syndrome computed, the value of the syndrome is the index
at which the received word will have to be flipped for error correction.

Hamming codes can be extended to include one more parity check bit at the end of each
valid codeword such that the parity check matrix will have the following form,

H =


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


4×8

Exercise 6: Show that the extended Hamming code has minimum Hamming distance of
4 i.e., it is a (2r ,2r − r −1,4) code.

Exercise 7: Let us consider the parity check matrix of the (2r −1,2r −1− r,3) Hamming
code for any r ≥ 2. We construct a new code by throwing away all columns of even weight
of the parity check matrix. What are parameters of the new code? What is the minimum
distance? Is there a relationship between this code with the extended Hamming code? Devise
a decoding algorithm for this code (for example if a syndrome of even weight is encountered
what does the decoder do?).

Exercise 8: Prove that Hamming codes are single-error correcting perfect codes. In other
words, they achieve the Hamming bound (see previous class notes). Think about the error
detection capability of the code.

Exercise 9: Remember that from Hamming bound, for any linear code defined over
GF (q) we have qn ≥ qk ∑t

i=0

(n
i

)
(q−1)i . Show that the following two codes achieve this bound

and hence they are perfect codes. What are the minimum distance of these codes?

• (23,12) code defined over GF (2).

• (11,6) code defined over GF (3).

7

3 CYCLIC CODES

Cyclic codes are important subclass of general linear codes. the linear code C is qual-
ified to be cyclic if it is invariant under cyclic shifts i.e., if c = (c0, . . . ,cn−1) ∈ C and cs =
(cn−1,c0, . . . ,cn−2) ∈C . Cyclic codes need not be linear at all. In fact there are nonlinear code
with cyclic property. However, historically this is not a preferred way of constructing good
codes.

For any word of length n, c ∈Ωn
q (and the shifted version), we can associate a polynomial

of degree less than n,

c(x) =c0 +c1x +·· ·+ cn−1xn−1 (3.1)

c s(x) =cn−1 +c0x +·· ·+ cn−2xn−1 (3.2)

where we notice that c(x) and c s(x) are equivalent in the ring of polynomials modulo xn −1,
i.e.,

c s(x) = xc(x) mod (xn −1) (3.3)

Through linearity argument and the fact that additional shifts do not take us out of the
linear space spanned by the code C , for any polynomial a(x), we have a(x)c(x) mod (xn−1) ∈
C . From Eqn. 1.4, we can choose a factor of (xn − 1), having degree r , that can generate a
cyclic code C . In other words, let q(x) be a polynomial over GF (q) of degree less than n − r .
Then, generator polynomial so chosen enables to claim q(x)g (x) ∈ C . Note that excluding
the trivial minimal polynomials 1 and xn −1, there are 2p −2 possible generator polynomials
(different cyclic codes). However, only some of the generator polynomials give good codes
with desirable distance and rate properties.

Definition 5: If g (x) is a generator polynomial of C , then the check polynomial of C , h(x)
satisfies g (x)h(x) = xn −1, i.e., g (x)h(x) = 0 mod (xn −1).

Let us consider an extension field GF (23) with the following factorization

x7 +1 = (x +1)(x3 +x +1)(x3 +x2 +1) (3.4)

The generator polynomial 1 does not generate any code but all the elements in GF (8)
and g (x) = x +1 is nothing but parity check code. Minimal polynomials such as x3 + x +1 or
x3 +x2 +1 generates (7,3) Hamming codes.

Exercise 10: Prove that the (8,4) extended binary Hamming code is not cyclic.

Once we have the generator polynomial g (x) =∑r
j=0 g j x j for a cyclic code, the construc-

tion of a generator matrix falls from the idea of convolution because multiplication of two

8

polynomial in fact corresponds to convolution operation. Therefore the non-systematic gen-
erator matrix is given by

GT =


g0 g1 gr 0 0 . . . 0
0 g0 g1 gr 0 . . . 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 . . . 0 g0 g1 gr


k×n

As we shall later see, cyclic codes have many different and efficient encoding/decoding
procedures that can lead to easy hardware implementations. Almost all commonly used lin-
ear codes are cyclic codes.

4 BOSE-CHAUDHURI HOCQUENGHEM (BCH) CODES

BCH codes are one of the good known linear cyclic block codes. BCH codes possess easy
encoding and decoding algorithms and show multiple-error correcting capabilities. After es-
tablishing the necessary background on algebra, we are now ready to define BCH codes.

A BCH code can be defined by either a parity check matrix or a generator polynomial.

4.1 DESIGN OF GOOD GENERATOR POLYNOMIALS

Let us start with finding a good generator polynomial that will enable us to have good
error detection/correction capabilities. Remember from previous section that, we have

xqm−1 −1 = f1(x) f2(x) . . . fp (x) (4.1)

and since g (x)|xqm−1 −1, then g (x) must be a product of fi (x) i.e., set of prime polynomial
over a given GF (q). The main objective is to design the roots of the generator polynomial (let
us say ν roots) and using the corresponding minimal polynomials of each root, we find the
generator polynomial as follows,

g (x) = LC M { f1(x), . . . , fν(x)} (4.2)

where { f1(x), . . . , fν(x)} are the corresponding minimal polynomials and LC M(.) is the least
common multiple operation. Number of roots ν and the selection of these roots are related
to the error-correction capability of the code and will be discussed next.

Consider a (n,k) BCH code. Let a(x) be the message polynomial of order k and after en-
coding operation the codeword polynomial will be given by c(x) = a(x)g (x). Suppose that the
codeword polynomial is corrupted by an error polynomial e(x) i.e., the received polynomial

9

is r (x) = c(x)+ e(x) where e(x) has t non-zero coefficients at i1, i2, . . . , it locations. If we let
{ω1, . . . ,ων} ∈GF (qm) be the roots of g (x), then we must have

r (ω j) = c(ω j)+e(ω j) = a(ω j)g (ω j)+e(ω j) = e(ω j) =
n−1∑
i=0

eiω
i
j =

t∑
s=1

eisω
is

j for j = 1, . . . ,ν

(4.3)

Note that there are 2t unknowns, namely {i1, . . . , it ,ei1 , . . . ,ei t } and νnon-linear equations.
For a unique solutio, we need at least 2t equations. Therefore, in order to design a t-error
correcting (n,k) BCH code, we choose ν= 2t and ω j = αa+b j in the extension field, where b
is chosen such that gcd(n,b) = 1. If a = 1, the BCH code is named narrow-sense. We will see
how to solve the set of equation given in Eqn. 4.3 when we talk about algebraic decoding for
BCH and Reed-Solomon codes. We note here that the choice of a might have an effect on the
encoder/decoder complexity.

Exercise 11: Let us consider the following factorization over GF (2)

x15 +1 = (x4 +x +1)(x4 + x3 +1)(x4 +x3 +x2 +x +1)(x2 +x +1)(x +1) (4.4)

Choose an appropriate primitive polynomial to construct GF (16). Give an example of a
minimal polynomial that cannot be a primitive polynomial. Construct a single error (t = 1)
correcting binary BCH code with a block length of 15. What is the generator polynomial?
What are the code parameters k and Dmi n? Repeat this with t = 2.

When constructing an arbitrary cyclic code, there is no guarantee as to the resulting min-
imum distance. An exhaustive computer search is often used to find the minimum-weight
codewords of a linear code and thereby the minimum distance. However the BCH codes,
given a constraint on their generator polynomial, can achieve a certain target/design mini-
mum distance.

Theorem 4: Let C be a (n,k) cylic code over GF (qm). We choose m so that GF (qm) is the
smallest extension field that contains the primitive element α and αn−1 ≡ 1. Let g (x) be some
product of minimal polynomials corresponding to the set of powers of the primitive element
{αa ,αa+1, . . . ,αa+2t−1} with b = 1. Therefore, we have g (αa) = g (αa+1) = ·· · = g (αa+2t−1) =
0 for some integer b ≥ 1. The code C defined by the generator polynomial has a minimum
distance Dmi n ≥ 2t +1. .

Note that from theorem 2, we deduce that c(αa) = c(αa+1) = ·· · = c(αa+2t−1) = 0. There-
fore, it is easy to see that a parity check matrix can be constructed for a BCH code based on
this observation as follows,

H =


1 αa α2a . . . α(n−1)a

1 αa+1 α2(a+1) . . . α(n−1)(a+1)

...
...

...
...

...
1 αa+2t−2 α2(a+2t−2) . . . α(n−1)(a+2t−2)

1 αa+2t−1 α2(a+2t−1) . . . α(n−1)(a+2t−1)



10

Exercise 12: Show that a binary primitive narrow-sense BCH code over GF (2m) has the
following parity check matrix,

H =


1 α α2 . . . α(2m−2)

1 α3 α6 . . . α3(2m−2)

...
...

...
...

...
1 α2t−1 α2(2t−1) . . . α(2m−2)(2t−1)


A design procedure for (n,k,Dmi n ≥ 2t +1) BCH code can be summarized as follows,

• Select a primitive element α ∈GF (qm) so that m is minimal.

• Select 2t consecutive powers of α starting with αa for some integer a ≥ 1.

• Let fi (x) be the minimal polynomial of αi where a ≤ i ≤ a +2t −1. Then choose g (x) =
LC M(fa(x), . . . , fa+2t−1(x)) in GF (q).

Most of the time, primitive binary BCH codes are used because cardinality of cyclotomic
cosets (mod n) is generally smaller for primitive codes. This also means more efficient (bet-
ter rate) codes can be constructed given the target minimum distance. In addition, large
alphabets have better potential to have smaller cyclotomic cosets. This can be regarded as
one of the motivations for Reed-Solomon codes as described next.

Let us construct a primitive narrow-sense binary 2-bit error correcting BCH code over
GF (24). Since it is primitive, n = 15. At this point, we do not know the message length nor
the rate of the code. Let x4+x+1 be the primitive polynomial that generates the GF (24) with
the root α, the primitive element of the extension field. Since the code is narrow-sense 2-
bit error correcting, the generator polynomial has the roots α,α2,α3 and α4. We can realize
the the minimal polynomial associated with the roots α,α2 and α4 is x4 + x +1, and the the
minimal polynomial associated with the root α3 is x4 + x3 + x2 + x +1. Therefore the LC M(.)
of the minimal polynomials of roots of the generator polynomials is given by

g (x) = (x4 +x +1)(x4 +x3 +x2 +x +1) (4.5)

= x8 +x7 +x6 +x4 +1 (4.6)

In fact, the order of g (x) is 8 suggesting that there are eight roots of this generator poly-
nomials. These roots are given by α,α2,α3,α4,α6,α8,α9,α12. Thus, the number of parity bits
is 8. This generates a BCH code of (15,7,Dmi n ≥ 5). In fact for these parameter selections,
the code has exactly minimum distance 5. This result can be verified based on the following
theorem.

Theorem 5: A (n,k) primitive binary BCH code over GF (2m) and design distance 2t +1
has exact minimum distance 2t +1 if

t+1∑
i=0

(
n

i

)
> 2mt (4.7)

11

PROOF: The proof follows by recognizing that primitive binary BCH code has minimum
distance d odd and using the sphere packing (Hamming) bound. We will generalize this the-
orem in problem section for general non-binary codes. �

Hence, the parity check matrix of (15,7,5) binary BCH code will be given as,

H =
(

1 α α2 . . . α14

1 α3 α6 . . . α42

)
=



1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1


The nice thing about the BCH codes is that they are cyclic codes and thus the encoding

operation as well as the syndrome computations are quite easy and can be implemented us-
ing shift registers. Using our example, we can construct the BCH encoder using the following
shift register,

+ + +
c(x)=m(x)g(x)

m(x)

+

Figure 4.1: Non-systematic shift register encoder for the above example. Squares are simple memory elements
such as flip flops.

4.2 REED-SOLOMON CODES

A (n,k) RS code is a non-binary BCH code defined over GF (q) where n = q − 1 where
q is either prime or power of prime. Remember that for a given primitive element α of the
extension field GF (qm) the conjugate set consists of the set {αa ,αaq , . . .αaqr−1

} where r is the
smallest integer such that αaqr = αa , i.e., we have the cyclotomic set {a, aq, . . . , aqr }. For RS
codes we have n = q−1, so the cyclotomic set {a} contains only one element because aq s = a
mod (q −1) for 0 ≤ s ≤ r −1.Therefore, the minimal polynomial corresponding to element αa

is given by (x −αa). Thus, the generator polynomial for t- symbol error correcting RS code is
given by

g (x) = (x −αa)(x −αa+1) . . . (x −αa+2t−1) (4.8)

Let us assume the primitive polynomial x3+x +1 generates the GF (8) and let α be the prim-
itive element. We construct the t = 2-symbol error correcting RS code using the following

12

narrow-sense generator polynomial,

g (x) = (x −α)(x −α2)(x −α3)(x −α4) (4.9)

= x4 +α13x3 +α6x2 +α3x +α10 (4.10)

The order of the generator polynomial is 4 for this example. The primitive non binary BCH
code (RS code) has length 7 symbols and each symbol may consist of 3 bits. This means that
we constructed (7,3) RS code. The minimum distance of the constructed code ≥ 5 by design.
But we know that from singleton bound we have an upper bound on the minimum distance,
i.e., for any linear block code dmi n ≤ n−k+1 (refer to previous lectures). Therefore, minimum
distance of this RS code is guaranteed to be 5. This is a special property of the RS codes which
is generalized and stated in the following theorem,

Theorem 6: An (n,k) Reed-Solomon code defined over GF (q) has a minimum distance
n −k +1.

PROOF: Proof follows from our previous discussion for generalized (n,k) RS code using
BCH bound and singleton bound.

An (n,k) code that satisfies the Singleton bound with equality is called Maximum Dis-
tance Separable (MDS) code. There are special properties with MDS codes. For example, the
dual of an MDS code is also MDS. In addition, punctured/shortened MDS codes maintain
the MDS property i.e., subcodes of an MDS code is also an MDS code. Finally, the weight
distribution of the codewords of an MDS code is known. This tremendously help predict the
performance of MDS codes and their functional characteristics.

The parity check matrix for the RS codes can be given based on the non-binary BCH code
parity check matrix by recognizing that {c(α),c(α2), . . . ,c(α2t)} are all zeros. Let m(x) be a
message polynomial of degree k and g (x) = g0 + g1x +·· ·+ g2t−1x2t−1 + x2t be the generator
polynomial of the code. The systematic encoding process for (n,k) RS code will then be given
by (note 2t = n −k for RS codes)

c(x) = m(x)xn−k −
[

m(x)xn−k mod g (x)
]

(4.11)

The following shift register encoder generates the check bits m(x)xn−k mod g (x) and
appends it to the message bits m(x) to generate the systematic codeword.

We have seen that by changing the channel alphabet over which the BCH is defined, we
obtain codes with different properties such as RS codes. We now consider an example: dif-
ferent BCH codes over different decoder alphabets for comparison. Let us take our previous
example (15,7,5) binary BCH code over the base field GF (2). Let us assume α is the primi-
tive polynomial of the extension field GF (24). We present the BCH codes over the subfields
GF (2),GF (4) and GF (16). A 2-symbol/bit correcting BCH code will have α,α2,α3 and α4 as
the roots of the generator polynomial.

13

+

+

c(x)

m(x)

g0

++

g1 g2

-1

-1

g2t

Figure 4.2: Systematic shift register encoder for RS codes. Squares are simple memory elements such as flip
flops.

• BCH code over GF (2) (m = 4) will have α and α3 as the roots, the rest will be the con-
jugates. Thus, the order of the generator polynomial is n −k = 8, therefore we obtain
(15,7) BCH code with minimum distance 5. This code has a block length of 15 bits.

• BCH code over GF (4) (m = 2) will have α,α2 and α3 as the roots, the rest will be the
conjugates. Thus, the order of the generator polynomial is n−k = 6, therefore we obtain
(15,9) BCH code with minimum distance 5. This code has a block length of 30 bits.

• BCH code over GF (16) (m = 1) will have α,α2,α3,α4 as the roots, no conjugates exist.
Since this BCH code is primitive, by definition, it is an RS code. The order of the genera-
tor polynomial is n−k = 4, therefore we obtain (15,11) RS code with minimum distance
5. This code has a block length of 60 bits.

Finally, we remark about an important type of matrix called Vandermonde and establish
the similarity between Vandermonde matrix and the parity check matrix of a general BCH
code.

Definition 6: A η×η Vandermonde matrix is a matrix of the form

Vη =


1 1 1 . . . 1

X1 X2 X3 . . . Xη

...
...

...
...

...

X η−1
1 X η−1

2 X η−1
3 . . . X η−1

η


whose determinant is non-zero given Xi terms are distinct.

If we replace Xi with αi , we can observe that this will be identical to H T of the narrow-
sense BCH code (a = 1) and thereby RS codes. Thus, we can argue that a (n,k) BCH code
whose check matrix have n −k ≤ 2t rows, has minimum distance at least 2t +1.

Observing the structure of the parity check matrix leads us to give an alternative defini-
tion of RS codes by constructing a non-systematic generator matrix. Let us have a message
vector m = (m0,m1, . . . ,mk−1)T ∈Ωk

q , where the message polynomial is

m(x) = m0 +m1x +m2 +·· ·+mk−1xk−1 (4.12)

14

By far, we have shown how to construct systematic and non-systematic RS codes by
multiplying the message polynomial with the generator polynomial of the code. Instead of
multiplication, let us evaluate m(x) at points {1,α,α2, . . . ,αn−1} to form the codeword vector
c = (c0,c1, . . . ,cn−1) of a (n,k) RS code. We will show shortly, this operation indeed generates a
RS code by looking at the check conditions c(α) = c(α2) = ·· · = c(αn−k) = 0 which was based
on our previous development of the general BCH codes and generator polynomials. However,
let us first observe that evaluation of the polynomial m(x) at the points {1,α,α2, . . . ,αn−1} is
nothing but multiplying the message vector by the following generator matrix i.e., c = Gm
where

G =


1 1 1 . . . 1
1 α α2 . . . αk−1

1 α2 (α2)2 . . . (α2)k−1

...
...

...
...

...
1 αn−1 (αn−1)2 . . . (αn−1)k−1


Our previous arguments were based on the parity check characterization of the code.

Now let us prove that generator characterization through evaluations of the message polyno-
mial at different locations is exactly the same as the parity check characterization. To show
this, let us multiply the generator matrix so constructed with the parity check matrix of the
RS code,

1 α α2 . . . αn−1

1 α2 (α2)2 . . . (α2)n−1

1 α3 (α3)2 . . . (α3)n−1

...
...

...
...

...
1 αn−k (αn−k)2 . . . (αn−k)n−1


n−k×n︸ ︷︷ ︸

H


1 1 1 . . . 1
1 α α2 . . . αk−1

1 α2 (α2)2 . . . (α2)k−1

...
...

...
...

...
1 αn−1 (αn−1)2 . . . (αn−1)k−1


n×k︸ ︷︷ ︸

G

Let Hi be the i -th row of the parity check matrix where 1 ≤ i ≤ n −k and G j be the j -th
column of the generator matrix where 0 ≤ j ≤ k − 1. It is sufficient to show that Hi G j = 0(
mod xn −1). Observe that

Hi G j =
n−1∑
k=0

(αi+ j)k = 1− (αi+ j)n

1−α
= 1− (αn)i+ j

1−α
(4.13)

But since αn = 1(mod xn −1), the result follows. This observation leads to very simple code-
word construction as it will enough to evaluate the message polynomial at n different loca-
tions to get a valid RS codeword.

Reed-Solomon codes found applications in many diverse fields of engineering since their
first invention in 1960s [1]. Although these codes are old, they are still used in many com-
mercial applications and products in the market. RS codes are optimal in the sense that
they achieve the singleton bound. However, they are defined over large alphabets and ba-
sic unit of hardware is in bits. Therefore, some kind of transformation of RS symbols into bits

15

is needed in order to be able to generate binary codes. Yet, it is not optimal to construct a
non-binary code if we are going to use the code in the binary domain simply because there
are better codes constructed over the binary base fields such as binary BCH codes. The per-
formance determinant of a given application is not only the way the code is constructed and
used but also is the error characteristics over which the code is used to protect data. That is
why RS codes are still popular in some applications which are mostly dominated by burst er-
rors. Since the consecutive bit errors only effect few symbols in an RS code, the decoder will
be able to recover the information whereas a binary code will fail due to too many bit errors.

Exercise 13: If a (n/m,k/m) RS code is defined over GF (2m), each symbol will simply
have m-bit representation. The resulting binary code will have parameters (n,k,≥ n −k +1)
because the minimum number of bit errors this RS code can correct (the worst case) is n−k+1
which follows from the singleton bound. Let d be the minimum distance of the code, other
way of writing these parameters is (n,n−(d−1)m,≥ d). For a t-bit error correcting BCH code,
we argued that n −k ≤ mt and d ≥ 2t +1. Thus, t ≤ (d −1)/2 implies that

n −m

(
d −1

2

)
≤ n −mt ≤ k (4.14)

which leads to the binary BCH code with parameters (n,≥ n −m
(

d−1
2

)
,≥ d). As can be seen

the binary BCH code guarantees the same distance (design) while ensuring a better code rate.

5 ALGEBRAIC DECODING OF BCH CODES

Up to this point, we have analyzed code construction methodologies and talked about
suitable encoders for BCH codes. In this section, we will present some of the well-known
decoding algorithms devised in general for cyclic codes. These algorithms are therefore ap-
plicable to BCH as well as RS decoding. We will present a decoding procedure that can correct
up to half the minimum distance of the code. However, there have been studies that is shown
to improve performance by decoding beyond half the minimum distance. We will cover such
algorithms later.

Suppose that the error polynomial e(x) have ν≤ t errors in indexed locations i1, i2, . . . , iν
and let r (x) = c(x)+ e(x) be the received polynomial. The initial operation of the decoder
is to multiply the received vector with the parity check matrix of the code H. This is noth-
ing but the evaluation of the received polynomial at the roots of the generator polynomial
α,α2, . . . ,α2t (Note that we assume a = 1 in the rest of our discussion of this section. The
general case a ≥ 1 shall be left as an exercise). The result of this operation generates the syn-
dromes as follows,

S j = r (α j) = c(α j)+e(α j) = e(α j) =
ν∑

s=1
eis (α j)is =

ν∑
s=1

eis (αis) j 1 ≤ j ≤ 2t (5.1)

16

For short hand notation, set Ys = eis and Xs =αis . We have the following set of equations
to solve,

S1 = Y1X1 +Y2X2 +·· ·+YνXν (5.2)

S2 = Y1X 2
1 +Y2X 2

2 +·· ·+YνX 2
ν (5.3)

S3 = Y1X 3
1 +Y2X 3

2 +·· ·+YνX 3
ν (5.4)

... = ... (5.5)

S2t = Y1X 2t
1 +Y2X 2t

2 +·· ·+YνX 2t
ν (5.6)

Given the computed syndromes, the objective of the decoder is to find Y1, . . . ,Yν, X1, . . . , Xν.
Note that there are 2t equation and 2ν unknowns. In order for a unique solution ν ≤ t as
assumed. The second step of the decoder is to compute, if possible, the error locations
X1, . . . , Xν by constructing a polynomial called “Error-Locator Polynomial" Λ(x). This poly-
nomial have the reciprocal of Xs as its roots, i.e., Λ(X −1

1) =Λ(X −1
2) = ·· · =Λ(X −1

ν) = 0 where

Λ(x) = (1− x X1)(1− xX2) . . . (1− xXν) (5.7)

= Λνxν+Λν−1xν−1 +·· ·+Λ1x +1 (5.8)

The decoding procedure that is used to find Λ(x) from S1, . . . ,S2t is called Paterson-
Gorenstein-Zierler (PGZ) decoder. Let us consider the following product,

Ys X j+ν
s Λ(X −1

s) = Ys X j+ν
s

(
ΛνX −ν

s +Λν−1X −ν+1
s +·· ·+Λ2X −2

s +Λ1X −1
s +1

)
(5.9)

= Ys

(
ΛνX j

s +Λν−1X j+1
s +·· ·+Λ2X j+ν−2

s +Λ1X j+ν−1
s +X j+ν

s

)
(5.10)

= 0. (5.11)

Now for a given j , let us sum the equations from s = 1 to s = ν. This gives us

0 =
ν∑

s=1
Ys X j+ν

s Λ(X −1
s) =Λν

ν∑
s=1

Ys X j
s +Λν−1

ν∑
s=1

Ys X j+1
s +·· ·+Λ1

ν∑
s=1

Ys X j+ν−1
s +

ν∑
s=1

Ys X j+ν
s

(5.12)

=ΛνS j +Λν−1S j+1 +·· ·+Λ1S j+ν−1 +S j+ν (5.13)

In order to end up with all the known syndromes, we must have 1 ≤ j ≤ 2t −ν. Thus, we
have the following set of linear equations to solve,


S1 S2 S3 . . . Sν

S2 S3 S4 . . . Sν+1
...

...
...

...
...

Sν Sν+1 Sν+2 . . . S2ν−1


︸ ︷︷ ︸

S2ν


Λν

Λν−1
...
Λ1

=


−Sν+1

−Sν+2
...

−S2ν



17

We note that the syndrome matrix can be decomposed to Vandermonde components as
follows,

S2ν =VνDV T
ν (5.14)

where

D =


Y1X1 0 0 . . . 0

0 Y2X2 0 . . . 0
...

...
...

...
...

0 0 0 . . . YνXν


If ν < t errors occur, then S2t is non-singular matrix because Xν+1, . . . , X t ,Yν+1, . . . ,Yt

are zeros and therefore det(D) = 0. The latter follows from the basic fact of linear algebra
det(S2ν) = det(S2ν) = det(Vν)2 det(S2ν) and Vandermonde matrices are singular for distinct
entries.

This observation provides a way to determine the number of errors occurred in the code-
word as long as ν≤ t . In other words, we find largest ν such that det(S2ν) is nonzero. Next, we
compute S−1

2ν based on the syndrome values. Thus, the coefficients of the error locator poly-
nomial Λ(x) are found using matrix multiplication. The roots i.e., the set {X1, . . . , Xν} of Λ(x)
can be found by trial and error, a process known as Chien Search. Once we determine the set
{X1, . . . , Xν}, we can use the first ν set of syndrome equations to compute {Y1, . . . ,Yν} because
if ν errors occurred, {X1, . . . , Xν} will be distinct and therefore the following matrix will have
non-zero determinant (Why?).


X1 X2 X3 . . . Xν

X 2
1 X 2

2 X 2
3 . . . X 2

ν
...

...
...

...
...

X ν
1 X ν

2 X η−1
3 . . . X ν

ν


Note that if we decode a binary code, we do not need to compute the error values {Y1, . . . ,Yν}.

This leads to complexity reductions in the decoder implementation.

5.1 EFFICIENT DECODING ALGORITHMS

Successful application of an error correcting code can only be realized if they possess
efficient encoding and decoding procedures. Although the rate and minimum distance of the
code are parameters based on which a performance estimation can be made, the efficiency
and implementation complexity are the other crucial items that would have an effect on the
final judgement of the designer.

18

Previously, we have shown a way to compute the coefficients of the error locator polyno-
mial Λ(x). However, matrix inversion is costly procedure. There are efficient ways to com-
pute Λν, . . .Λ1. One way is given by Berlekamp-Massey (BM) Algorithm based on a iterative
method. It sets Λ(x) = 1 initially, and gradually improve the result based on a number of
iterations and syndromes S j such that

S j+ν+Λ1S j+ν−1 +·· ·+Λν−1S j+1 +ΛνS j = 0 ⇒ S j+ν =−
ν∑

i=1
Λi S j−i+ν (5.15)

Sl =−
ν∑

i=1
Λi Sl−i (5.16)

in which we make the change of variables l = j +ν.

The BM algorithm generates the LFSR that produces the entire syndrome sequence {S1, . . . ,S2t }
by successively modifying an existing LFSR to produce increasingly longer sequences. Let us
denote k be the iteration index and Lk be the length of the LFSR generated on iteration k. We
initialize error locator polynomial as Λ(−1)(x) = 1 and at the k-th iteration we have,

Λ(k)(x) = 1+Λ(k)
1 x +Λ(k)

2 x2 + . . .Λ(k)
Lk

xLk (5.17)

Suppose after k −1 iterations, we end up with Λ(k−1)(x). On iteration k we first compute

Ŝk =−
Lk−1∑
i=1

Λ(k−1)
i Sk−i (5.18)

The discrepancy is given by dk = Sk − Ŝk = Sk +∑Lk−1
i=1 Λ(k−1)

i Sk−i . If there is a non-zero
discrepancy, the algorithm regenerates a polynomial using the iteration,

Λ(k)(x) =Λ(k−1)(x)+d−1
k−1dk xΛ(k−2)(x) (5.19)

The iterations continue till the LFSR produces the whole set of syndromes. The final
answer will be the error locator polynomial.

More about BM algorithm’s derivations of iterations and the details of this method can
be found in [2]. BM algorithm is a very efficient way to compute the error locator polynomial
particularly for binary codes in which some of the update steps can be merged into single
step. If the decoded code is non-binary, we still need to compute the error values. This can
be accomplished by Forney’s algorithm which we will be described next. We start with the
following definition and Lemma.

Definition 7: Syndrome polynomial is a polynomial representation of the computed syn-
drome values as follows,

S(x) = S1 +S2x +·· ·+S2t x2t−1 (5.20)

19

Lemma 1: We have the following fact

(1− x2t) = (1−x)(1+x + x2 +·· ·+ x2t−1) = (1−x)
2t−1∑
j=0

x j (5.21)

Now we define the error-evaluator polynomial ϕ(x) = S(x)Λ(x)(mod x2t). We observe,

ϕ(x) =
(

2t∑
j=1

S j x j−1

)
ν∏

i=1
(1−Xi x) (mod x2t) (5.22)

=
(

2t∑
j=1

ν∑
s=1

Ys X j
s x j−1

)
ν∏

i=1
(1−Xi x) (mod x2t) (5.23)

=
ν∑

s=1
Ys Xs

2t∑
j=1

(x Xs) j−1
ν∏

i=1
(1−Xi x) (mod x2t) (5.24)

=
ν∑

s=1
Ys Xs (1−x Xs)

2t−1∑
j=0

(x Xs) j

︸ ︷︷ ︸
(1− (xXs)2t) by Lemma 1

ν∏
i ̸=s

(1−Xi x) (mod x2t) (5.25)

=
ν∑

s=1
Ys Xs

ν∏
i ̸=s

(1−Xi x) (mod x2t) (5.26)

where we used the fact that (x Xs)2t ≡ 0(mod x2t). Now we have the necessary tools to state
the following theorem.

Theorem 7: (Forney’s algorithm)

Ys =− ϕ(X −1
s)

Λ′(X −1
s)

=−S(X −1
s)Λ(X −1

s)

Λ′(X −1
s)

(5.27)

where Λ′(.) is the derivative of Λ(.).

PROOF: Note that the derivative of Λ(.) can be found as

Λ′(x) = d

d x

ν∏
i=1

(1−Xi x) =−
ν∑

i=1
Xi

∏
j ̸=i

(1−X j x) (5.28)

Therefore, we have

Λ′(X −1
k) =−Xk

∏
j ̸=k

(1−X j X −1
k) (5.29)

20

Let us substitute X −1
k in ϕ(x) found in Eqn. 5.26 and have

ϕ(X −1
k) =

ν∑
s=1

Ys Xs

ν∏
i ̸=s

(1−Xi X −1
k) (5.30)

= Yk Xk

ν∏
i ̸=k

(1−Xi X −1
k) (5.31)

=−YkΛ
′(X −1

k) (5.32)

which completes the proof. �.

Forney’s algorithm leads to an important equation called “key equation" now on, i.e.,
ϕ(x) = S(x)Λ(x)(mod x2t). We shall see that there is another efficient way for the computa-
tion of Λ(x) by solving the “key equation" through Extended Euclidean algorithm.

5.1.1 THE KEY EQUATION AND EXTENDED EUCLIDEAN ALGORITHM

The extended Euclidan algorithm is an extension to the original Euclidian algorithm that
is used to find the greatest common divisor (GCD) for two numbers a and b or two polyno-
mials a(x) and b(x). This extended version also finds two integers or polynomials δ(x) and
ω(x) such that

δ(x)a(x)+ω(x)b(x) =GC D(a(x),b(x)) (5.33)

Let us remember the original Euclidian algorithm by way of an example. Suppose that
a = 363 and b = 57. Then, we have the following successive division operations and corre-
sponding remainders. In each step, we carry the divisor of the previous step as the divident
and the remainder as the new divisor for the current step. The algorithm halts when the re-
mainder hits zero. The last divisor value of the algorithm is the greatest common divisor.

Divident Divisor Quotient Remainder
- - - r1 = 363
- - - r2 = 57
363 57 q3 = 6 r3 = 21
57 21 q4 = 2 r4 = 15
21 15 q5 = 1 r5 = 6
15 6 q6 = 2 r6 = 3
6 3 = GCD(363,57) q7 = 2 r7 = 0

From this table, we observe that ri−2 = ri +qi ri−1 for i > 2. Let us express the remainder
in each step in terms of a and b, i.e., ri = aδi +bωi . The reason for defining this relationship
is that at the last step before the remainder becomes zero, r6 = GCD(363,57) in our example.

21

Note that for i = 1 and i = 2, we have r1 = 363 = a implies (δ1,ω1) = (1,0) and r2 = 57 = b
implies (δ2,ω2) = (0,1). Using this definition, let us observe the following set of equations by
substitution

ri =ri−2 +qi ri−1 (5.34)

=(aδi−2 +bωi−2)−qi (aδi−1 +bωi−1) (5.35)

=a(δi−2 −qiδi−1)+b(ωi−2 −qiωi−1) (5.36)

Thus, the coefficients for i > 2 can be found using the following recursive equations,

δi =δi−2 −qiδi−1 (5.37)

ωi =ωi−2 −qiωi−1 (5.38)

Therefore this algorithm simultaneously solves δi , ωi and ri , which at the last iteration
equals to GC D(a,b). Similar reasoning can be used to extend this idea to polynomials. After
giving a background refresher for the extended Euclidian algorithm, let us consider our key
equation again in this context.

θ(x)x2t +Λ(x)S(x) =ϕ(x)(mod x2t) (5.39)

where θ(x) is some arbitrary polynomial multiplied by x2t to satisfy the above equation in
modulo x2t . Now let us have a(x) = x2t and b(x) = S(x) in our context of previously defined
extended Euclidian algorithm. Let also δk = θ[k](x) and ωk =Λ[k](x) for k > 2 with the initial
conditions ϕ[1](x) = x2t and ϕ[2](x) = S(x). Then, we step through the algorithm to obtain
sequence of polynomials θ[k](x),Λ[k](x),ϕ[2](x) satisfying

θ[k](x)x2t +Λ[k](x)S(x) =ϕ[k](x)(mod x2t) (5.40)

where

Λ[k](x) =Λ[k−2](x)−Q [k](x)Λ[k−1](x) (5.41)

θ[k](x) =θ[k−2](x)−Q [k](x)θ[k−1](x) (5.42)

and Q [k](x) is the quotient of the division ϕ[k−2](x)/ϕ[k−1](x). As can be seen, as we step
through the algorithm the order of ϕ[k](x) decreases whereas the order of Λ[k](x) increases.
We cease the algorithm when ϕ[k](x) has degree less than the degree of Λ[k](x).

5.1.2 FINDING THE ROOTS OF Λ(x)

Previously, we have shown efficient methods for computing the coefficients of Λ(x), i.e.,
{Λν,Λν−1, . . . ,Λ1}. However, the error locations are the reciprocals of the roots of this polyno-
mial. In other words, an extra work must be done to compute the roots of the error locator
polynomial Λ(x). In theory, we can evaluate Λ(x) at x =β for each β ∈GF (q). Those elements

22

of the field that results in null shall be the roots of the polynomial. From our introduction to
finite fields, we observed that each element of the field can be expressed as some power of the
primitive element α. We have the following computations for an element αi for 0 ≤ i ≤ q −3,

Λ(αi) =Λν(αi)ν+Λν−1(αi)ν−1 +·· ·+Λ2(αi)2 +Λ1(αi)+1 (5.43)

Now, let us evaluate it at the next element in the field αi+1

Λ(αi+1) =Λν(αi)ναν+Λν−1(αi)ν−1αν−1 +·· ·+Λ2(αi)2α2 +Λ1(αi)α1 +1 (5.44)

We immediately see the relationship

Λ j ,i+1 =Λ j ,iα
j where Λ j ,i =Λ j (α j)i for 1 ≤ j ≤ ν. (5.45)

and we argue that the computations can simply be iterated based on the previous evaluation
result. When implemented in hardware, this approach significantly reduces the complexity,
as all multiplications consist of one variable and one constant, rather than two variables as
in the brute-force approach. This observation was due to Chien who devised this search
algorithm for efficiency in 1964 [3].

5.1.3 GALOIS FIELD FREQUENCY DOMAIN DECODING

We represent the polynomial v(x) = v1+v2x +·· ·+vn xn−1 by the coefficient vector as v =
(v1, v1, . . . , vn) and its GF-discrete fourier transform (GF-DFT) as v̂ = (v̂1, v̂2, . . . , v̂n), defined
by

v̂ j = v(α j) =
n∑

i=1
viα

j (i−1), for j = 1,2, . . . ,n (5.46)

It is worth noting that DFT is injective mapping and its inverse (GF-IDFT) can be used to
recover v from v̂, which is defined by

vi = 1

n
v(α−i) = 1

n

n∑
j=1

v̂ jα
− j (i−1), for i = 1,2, . . . ,n (5.47)

Remember that our polynomial formulation r (x) = c(x)+ e(x) can be written in a vector
form as r = c+e. Using the above definition and taking the GF-DFT of both sides, we obtain
the transform domain equation R = C + E. Here note that the first 2t elements of R (and
therefore of E = (E1,E2, . . . ,En)) are given by the set of syndromes,

E1 = S1 = r (α),E2 = S2 = r (α2), . . . ,E2t = S2t = r (α2t) (5.48)

23

If we knew the other n −2t of the entries of E, we could have taken the GF-IDFT to ob-
tain e(x). The way to obtain this missing information is to use the error locator polynomial
coefficients Λ. if we take the n-point inverse transform, we have

λi = 1

n
Λ(α−i) = 1

n

ν∑
j=1

Λ j−1α
−i (j−1) (5.49)

At the error locations {is : s = 1,2, . . . ,ν}, we have

Λ(α−i1) =Λ(α−i2) = ·· · =Λ(α−iν) = 0. (5.50)

We observe that at the zeros of Λ(x), the error polynomial e(x) has non-zero values.
Therefore, λi ei = 0, for i = 1,2, . . . ,n i.e., ΛeT = 0. Multiplication operation in the time do-
main is a convolution operation in the transform domain. We have,

ν∑
k=0

Λk Em−k = 0, for m = ν+1,ν+2, . . . ,n +ν (5.51)

where Λ0 = 1 by definition. Since E1,E2, . . . ,E2t are already known, using Eqn. (5.51) we can
compute E2t+1 by letting m = 2t +1,

Λ0E2t+1 +
ν∑

k=1
Λk E2t+1−k = 0 ⇒ E2t+1 =−

ν∑
k=1

Λk E2t+1−k =−
ν∑

k=1
Λk S2t+1−k (5.52)

Similarly, the rest of the transform error coefficients (m > 2t +1) are calculated recursively as
follows,

Em =−
ν∑

k=1
Λk Em−k (5.53)

As can be noticed, we also calculated En+1, En+2,. . . ,En+ν in order to check the following
equalities to hold. If at least one of them does not hold, the decoder declares a failure [6].

E1 = En+1, E2 = En+2, . . . , Eν = En+ν (5.54)

Final step of decoding is to take the GF-IDFT of E, the error values will be given by error
polynomial coefficients computed as follows,

ei = 1

n

n∑
j=1

E jα
− j (i−1), for i = 1,2, . . . ,n (5.55)

24

5.1.4 ERROR & ERASURE DECODING

An erasure in decoding terminology is an error, location of which is known with some
probability. On the other hand, the value of the error is certainly not known. For example,
channel can provide a soft value of the transmitted symbol due to noise effect. If the soft
information is not within the acceptable bounds, we can declare an erasure is found.

Example: If the received word has ν errors and l erasures, we can show that if 2ν+ l <
dmi n , the decoding will be successful, where dmi n is the minimum distance of the code.

Let us assume that the received word has ν errors and l erasures with error locators
X1, X2, . . . , Xν where Xs = αis as previously defined. In addition, we have erasure locators
E1,E2, . . . ,El defined by Es = α js where we have erasures at locations j1, j2, . . . , jl . Since the
erasure locations are provided to the decoder, we can construct the erasure locator polyno-
mial,

Γ(x) =
l∏

s=1
(1−Es x) (5.56)

Let us compute the syndromes S j , but now with the presence of erasures. A natural way
is to assume that the symbol that is erased to have 0 value after “erasure". In that case, the re-
ceived word (or the received polynomial r (x)) will have zeros in erasure locations j1, j2, . . . , jl .
For this to happen, erasure values in those locations must be equal to codeword symbols in
the exact same locations i.e., lis = cis . In this case, the syndromes will be given by

S j = r (α j) =
ν∑

s=1
eis X j

s +
l∑

s=1
lis E j

s 1 ≤ j ≤ 2t (5.57)

Now let our syndrome polynomial be

S(x) =
2t∑

j=1
S j x j−1 (5.58)

Therefore our key equation becomes,

Λ(x)Γ(x)S(x) =ϕ(x) (mod x2t) (5.59)

If we update the definition of syndrome polynomial as S(x) = Γ(x)S(x)(mod x2t). Since
we know Γ(x) and S(x), this computation should not be hard. After this definition, it should
apparent that the problem is reduced down to the one previously discussed; The key equation
to be solved is

Λ(x)S(x) =ϕ(x) (mod x2t) (5.60)

25

We can either apply B-M algorithm or extended Euclidian algorithm to find Λ(x). In
a number of reported results B-M algorithm is shown to be little more efficient than the ex-
tended Euclidian algorithm, although many applications use it because it computes the poly-
nomials simultaneously and for other hardware implementation reasons. After computing
Λ(x), we generate the polynomial Ψ(x) =Λ(x)Γ(x), and either use Forney’s algorithm or fre-
quency domain decoding to efficiently compute the error and erasure values. Using Forney’s
algorithm for example, we have

eis =− ϕ(X −1
s)

Ψ′(X −1
s)

, lis =− ϕ(E−1
s)

Ψ′(E−1
s)

. (5.61)

where Ψ′(x) is the ordinary derivative of Ψ(x).

5.2 A WORKING EXAMPLE

Before quitting this section, let us give a working example to show how BM, Chien search,
extended Euclidean and Forney’s algorithms work all together. Let us assume we use (7,3) RS
code defined over GF (8) (using a primitive polynomial x3 +x +1) with the generator polyno-
mial g (x) = (x −α)(x −α2)(x −α3)(x −α4). Suppose we received r (x) =α3x +α4x3. This code
is a two symbol error correcting code (as indicated before) and thus we have the following
syndromes:

S1 = r (α) =α4+1 =α5,S2 = r (α2) =α5+α3 =α2,S3 = r (α3) =α6+α6 = 0,S4 = r (α4) = 1+α2 =α6

(5.62)

Let us now show how BM algorithm works on the computed syndromes to compute the
error locator polynomial. We first set Λ(−1)(x) = 1 and Λ(0)(x) = 1. The first discrepancy d0 =
1+0. The following steps are taken to determine Λ(x),

• k = 1: S1 =α5, d1 = S1 +0 =α5. Λ(1)(x) =Λ(0)(x)+1−1α5xΛ(−1)(x) = 1+α5x

• k = 2: S2 = α2, d2 = S2 +Λ(1)
1 S1 = α2 +α3 = α5. Λ(2)(x) = Λ(1)(x)+ (α5)−1α5xΛ(0)(x) =

1+α5x +x = 1+α4x.

• k = 3: S3 = 0, d3 = S3+Λ(2)
1 S2+Λ(2)

2 S1 = 0+α6+0. Λ(3)(x) =Λ(2)(x)+(α5)−1α6xΛ(1)(x) =
1+α4x +αx(1+α5x) = 1+α2x +α6x2.

• k = 4: S4 = α6, d4 = S4 +Λ(3)
1 S3 +Λ(3)

2 S2 +Λ(3)
3 S1 = α6 +α = α5. Λ(4)(x) = Λ(3)(x) +

(α6)−1α5xΛ(2)(x) = 1+α2x +α6x2 +α6x(1+α4x) = 1+x +α4x2.

Since now the all syndromes can be produced by the LFSR defined by the polynomial
Λ(x) = 1+x+α4x2, BM algorithm stops iterating. Using Chien search, we can find the roots of

26

this polynomial by iteratively evaluating it at each element of the field. We find that Λ(α6) = 0
and Λ(α4) = 0. Reciprocals of these roots give us the error locations α−6 = α and α−4 = α3.
Let us construct the syndrome polynomial,

S(x) = S1 +S2x +S3x2 +S4x3 =α5 +α2x +α6x3 (5.63)

together which the key equation can be computed as follows,

ϕ(x) = S(x)Λ(x) = (α5 +α2x +α6x3)(1+x +α4x2) mod (x4)

= α5 +α2x +α6x3 +α5x +α2x2 +α6x4 +α2x2 +α6x3 +α3x5 mod (x4)

= α5 +α3x +α6x4 +α3x5 mod (x4)

= α5 +α3x (5.64)

Alternatively, we could have used extended Euclidian algorithm to solve for Λ(x) and ϕ(x)
all together. As indicated for t = 2, we set ϕ[1](x) = x4 and ϕ[2](x) = S(x) = α5 +α2x +α6x3.
Based on this initialization, we also implicitly initialized Λ[1](x) = 0, Λ[2](x) = 1, θ[1](x) = 1
and θ[2](x) = 0 to satisfy the key equation in the first two steps of the algorithm: θ[k](x)x2t +
Λ[k](x)S(x) =ϕ[k](x)(mod x2t). The rest of the steps of the algorithm (k > 3) can be summa-
rized as,

• k = 3: Q [3](x) =ϕ[1](x)/ϕ[2](x) = x4/(α6x3 +α2x +α5) =αx, we have

Λ[3](x) =Λ[1](x)−Q [3](x)Λ[2](x) = 0+αx =αx (5.65)

θ[3](x) =θ[1](x)−Q [3](x)θ[2](x) = 1+0 = 1 (5.66)

ϕ[3](x) =x4 mod (α5 +α2x +α6x3) =α3x2 +α6x (5.67)

• k = 4: Q [4](x) =ϕ[2](x)/ϕ[3](x) = (α6x3 +α2x +α5)/(α3x2 +α6x) =α3x +α6, we have

Λ[4](x) =Λ[2](x)−Q [4](x)Λ[3](x) = 1+ (α3x +α6)(αx) = 1+x +α4x2 (5.68)

θ[4](x) =θ[2](x)−Q [4](x)θ[3](x) = 0+α3x +α6 =α3x +α6 (5.69)

ϕ[4](x) =α5 +α2x +α6x3 mod (α3x2 +α6x) =α3x +α5 (5.70)

Since the degree of Λ[4](x) ≤ t = 2, the algorithm stops and the outputs are Λ(x) = 1+
x +α4x2 and ϕ(x) = α3x +α5x as found by the BM algorithm and polynomial multiplica-
tion we performed after we determine Λ(x). Some hardware manufacturers prefer extended
euclidian algorithm over the BM because of complexity reductions, less iterations and simul-
taneous calculation of Λ(x) and ϕ(x).

Next, we check if deg{ϕ(x)} < deg{Ψ(x)} = deg{Λ(x)}. Since in our example we have
deg{ϕ(x)} = 1 < deg{Λ(x)} = 2, we continue finding the error values. Otherwise the decoder
declares a “decoding failure". Final step of decoding is to find the error values.

27

Using Forney’s algorithm: Since Λ′(x) = 1, we compute the error values as follows,

e2 = ϕ(α6) =α5 +α3α6 =α3 (5.71)

e4 = ϕ(α4) =α5 +α3α4 =α4 (5.72)

Using Frequrency domain decoding: We already know E1 =α5, E2 =α2 ,E3 = 0 and E4 =α6.
The rest of the values can be computed as follows,

E5 =−Λ1S4 −Λ2S3 =α6 +α4.0 =α6 (5.73)

E6 =−Λ1S5 −Λ2S4 =α6 +α4.α6 =α4 (5.74)

E7 =−Λ1S6 −Λ2S5 =α4 +α4.α6 =α6 (5.75)

E8 =−Λ1S7 −Λ2S6 =α6 +α4.α4 =α5 (5.76)

E9 =−Λ1S8 −Λ2S7 =α5 +α4.α6 =α2 (5.77)

Thus, E = [α5 α2 0 α6 α6 α4 α6 α5 α2]. Since the periodicity is present, the decoding is suc-
cessful. The error polynomial coefficients can be found GF-IDFT. They can be computed to
be e = [0 α3 0 α4 0 0 0 0 0].

Therefore the error polynomial is given by e(x) = e1 + e2x + ·· · + en xn−1 = α3x +α4x3

and the decoded codeword is c(x) = r (x) + e(x) = α3x +α4x3 +α3x +α4x3 = 0. Our final
note about BM algorithm is that there might be major simplifications to this algorithm as for
binary codes, at the even iterations of the algorithm the gaps can be shown to be zero and
hence one can skip those steps to have computational savings.

5.3 COMPUTATIONAL COMPLEXITY OF THE DECODING ALGORITHMS

For an (n,k,d) RS code, direct computation of syndromes requires O(dn) = O(n2) arith-
metic field operations. Faster algorithms can reduce this down to O(n log2 n loglogn). The
roots of Λ(x) can be found by Chien search with time complexity around O(νn) arithmetic
field operations. The extended euclidian algorithm requires O(νd) = O(νn) and in cases
where this algorithm can be accelerated requires O(n log2 n loglogn) arithmetic operations.
With novel advanced futures of simultaneous polynomial evaluations at n points, Forney’s al-
gorithm possess around the same time complexity of extended Euclidian algorithm. Finally,
accelerated BM algorithm through recursions are reported to require O(n log2 n loglogn) arith-
metic field operations. The details about these figures can be found in [7] and the references
therein.

For a (n,k,2t +1) RS code decoding consisting of syndrome computation, Key equation
solver (BM or an Extended Euclidian algorithm), Chien search and Forney’s algorithm, we can
report computational complexity for each in terms of there basic operations: 1) Multiplica-
tions, 2)Additions and 3) Inversions. Such is summarized in Table 5.1 based on the references
[8] and [9]. For example it must be quite easy to see that using a Horner’s method (See Prob-
lem 1) a syndrome computation require us to do (n − 1) additions and multiplications and

28

Operation Multiplications Additions Inversions
Syndrome Computation 2t (n −1) 2t (n −1) 0
Key Equation Solver 4t (2t +1) 2t (2t +1) 0
Chien Search n(t −1) nt 0
Forney’s formula 2t 2 t (2t −1) t
Total 3nt +10t 2 −n +6t 3nt +6t 2 − t t

Table 5.1: Computational complexity of decoding operations for BCH codes/RS codes.

since we have 2t syndromes, the total amount if additions and multiplications is 2t (n −1) as
predicted by the table.

It might be of interest to express these figures in terms of a basic operation such as binary
XOR. Let us make few assumptions in order to express the building block of the decoding
operation in terms of XORs. We assume multiplications and inversions have the same com-
plexity in GF (2m). We further assume one multiplication is equivalent to 2m additions. One
GF (2m) addition operation is equivalent to m independent GF (2) additions and without loss
of generality XOR and AND gates gave the same complexity. Therefore, the overall complexity
in terms of XOR-only operations is given by

C = 2m2(Nmul ti pl i cati ons +Ni nver si ons)+mNaddi t i ons (5.78)

where Nmul ti pl i cati ons , Ni nver si ons and Naddi t i ons denote the number of multiplications, in-
versions and additions, respectively. Using the results of Table 5.1 and Eqn. (5.78), one can
express the overall decoding complexity in terms of rough binary XOR operations.

Such computational complexity figures can be extended to hardware. However, this will
be function of the hardware architecture and implementation details of the constituent func-
tional blocks of the decoder. For example, [9] considered hypersystolic architecture. Other
architectures can give different results.

6 AN EFFICIENT RS CODE: CAUCHY REED-SOLOMON CODES

In various coding applications such as data storage, RS codes are used for erasure correc-
tion only. However, due to encoding and decoding complexity of these codes, low complexity
alternatives are considered. As of yet, we do not know any finite-length linear codes with
linear time encoding and decoding while having the MDS property defined over GF (2). One
option might be to give a little MDS performance away and obtain codes that allows simple
encoding and decoding algorithms.

Another alternative is to maintain the MDS property and simplify the Galois field addi-
tions and multiplications by using simple XOR operator. Note that the generator matrix G

29

for RS codes are of the Vandermonde matrix form. A special property about the generator
matrix is that every k ×k submatrix of G is a Vandermonde matrix and is non-singular i.e.,
invertible. Alternative class of matrices with that property is Cauchy matrices which shall be
discussed later. The advantage of Cauchy matrices over Vandermonde matrices is that their
determinant and/or inverses are easier (in terms of computation complexity) to find [5].

6.1 BINARY MATRIX/VECTOR REPRESENTATIONS OF FINITE FIELD ELEMENTS

From Table 1.1, it is apparent that every element of the field GF (qm) has a column binary
vector representation of length m bits. We denote ϕ(β) as column vector representation of
the field element β. For example ϕ(α) = [1 0 0]T .

The following construction also shows that such a trivial isomorphism between the finite
field elements and the m-bit tuple binary vectors can be extended to matrix representations
of the same field elements.

Definition 8: For any element β ∈ GF (2m) which is defined by the primitive polynomial
p(X), let ψ(β) be an m ×m square matrix whose i -th element is the coefficient vector of the
polynomial given by X i−1β mod p(X).

Let us consider the same example from Table 1.1, and let p(X) = X 3 +X +1 be the primi-
tive polynomial that generates the extension field GF (23). Apparently 0 ∈GF (23) has all-zero
matrix representation. We can also compute the matrix representations of the rest of the ele-
ments as follows:

α0 ⇒
1 0 0

0 1 0
0 0 1

 ,α1 ⇒
0 0 1

1 0 1
0 1 0

 ,α2 ⇒
0 1 0

0 1 1
1 0 1

 ,α3 ⇒
1 0 1

1 1 1
0 1 1

 (6.1)

,α4 ⇒
0 1 1

1 1 0
1 1 1

 ,α5 ⇒
1 1 1

1 0 0
1 1 0

 ,α6 ⇒
1 1 0

0 0 1
1 0 0

 (6.2)

The main reason for matrix representations is its suitability for defining Galois field addi-
tions and multiplications in binary domain i.e., vector/matrix additions and multiplications.
The following theorem characterizes that.

Theorem 8: The matrix representation ψ(.) characterizes an isomorphism from GF (2m) to
ψ(GF (2m)). Particularly,

• ψ(0) is all-zero matrix and ψ(1) is the identity matrix.

• ψ(.) is injective.

• For β1 ∈GF (2m) and β2 ∈GF (2m), we have ψ(β1 +β2) =ψ(β1)+ψ(β2)

30

• For β1 ∈GF (2m) and β2 ∈GF (2m), we have ψ(β1β2) =ψ(β1)ψ(β2)

PROOF: Proof can be found in [5].

In a practical application, coefficient vectors of field elements are stored in memory and
a sliding window of size 3×3 can be used to generate the matrix representations. The details
are left as exercise. In general, the following operations are the least costly to perform Galois
field operations,

• Addition: Let β1 ∈GF (2m) and β2 ∈GF (2m), ϕ(β1)+ϕ(β2) =ϕ(β).

• Multiplication: Let β1 ∈GF (2m) and β2 ∈GF (2m), ψ(β1)ϕ(β2) =ϕ(β1β2).

6.2 CAUCHY MATRICES

For erasure-resilient coding, generator matrix being in systematic form is of particular
interest. One important reason is that if the failures are located on parity symbols or packets,
the data will be readily available which require no decoding operation. That can enhance the
access speed to the data.

Theorem 9: Let C be a n −k ×k matrix defined over GF (qm). The matrix [Ik |C]T shall be
a valid generator matrix of a systematic MDS code if and only if every square submatrix of C is
non-singular.

PROOF: Proof can be found in [4].

One solution to what Theorem 9 suggests is to use Vandermonde type matrices which
generates a type of Reed-solomon codes. However, when erasure-resilient designs are con-
cerned, there has been shown to exist better alternatives such as Cauchy matrices which sat-
isfies the conditions of Theorem 9.

A n −k ×k Cauchy matrix can be defined by defining two disjoint sets S = {s1, . . . , sn−k }
and R = {r1, . . . ,rk } where si and r j are distinct elements of GF (2m). The (i , j)-th entry of the
Cauchy matrix is given by 1/(si + r j). The determinant of a Cauchy matrix can be shown to
be non-zero. Since every square sub-matrix of a Cauchy matrix is another Cauchy matrix,
the matrix C of Theorem 9 can be chosen to be a Cauchy matrix. Furthermore, any k × k
sub-matrix of [Ik |C]T is invertible. If C is chosen to be Cauchy type, then it is shown that
the inversion can be done in O(n2) time instead of O(n3) for a general Vandermonde matrix
inversion. For details, see [5].

7 SOFT DECISION DECODING FOR LINEAR ALGEBRAIC CODES

This section is an advanced topic and will only be summarized. Interested readers shall be
directed to the referenced articles for more details. One of the very well known soft decision

31

algebraic decoding technique was proposed by Forney back in 1966 in the name General-
ized Minimum Distance (GMD) decoding which was based on multiple use of hard decision
decoding techniques. Later Chase (1972) proposed a method based on flipping some of the
least reliable symbols and multiple use of hard decision decoder. Drawback of these mathods
was the exponentially increasing complexity.

8 PROBLEMS

Problem 1: Apparent from the text is that all the algorithms presented consist of basic
finite field polynomial arithmetic. In this question we would like to evaluate a polynomial at a
point. If the polynomial A(x) =∑n−1

i=0 ai xi is to be evaluated at point x0, what is the minimum
number of additions and multiplications? (Hint: Rewrite A(x0) = a0 + x0(a1 + x0(a2 + ·· · +
xan−1 . . .)).)

Problem 2: Construct a non-binary Hamming code over Fq with parameter r by consid-
ering all (qm−1) q− ary tuples. Show that the parity check matrix of the non-binary Hamming
code is of size r ×(qm−1)/(q−1) with 1-symbol of r bits can be corrected. In otherwords, this
code can correct r -bit errors maximum.

Problem 3: Consider a (n,k,d) cyclic code with generator polynomial g (x) defined over
a field with primitive elementα. Assuming thatα is the n-th root of unity, show that the parity
check polynomial should satisfy h(x)g (x) = xn−1. Furthermore, if g (x) = LC M { f1(x), . . . , fd−1(x)}
where f j (x) is an irreducible factor of xn −1, prove that h(x) =GC D{ f1(x), . . . , fd−1(x)}.

Problem 4: Consider the following factorization of the polynomial X 23 +1 in GF (2),

(1+X)(1+X 2 +X 4 +X 5 +X 6 +X 10 +X 11)(1+X +X 5 +X 6 +X 7 +X 9 +X 11) (8.1)

Construct a 3-bit error correcting binary BCH code. Show that minimum distance of the
code is 7. Show that the code is perfect. If we extend the code by adding parity at the end of
each valid codeword, what will be the minimum distance? Is the code still perfect? Give the
parity check matrix of the resultant code.

Problem 5: In this example we will show that we can find analytical result for k, the
dimension of a BCH code given that it is primitive and narrow-sense. Let us remember the
definition of a primitive, narrow-sense BCH code of length n = qm − 1 defined over GF (q).
With the design distance γ, the code has the following generator polynomial of the form

g (x) = ∏
s∈Z

(x −αs), with Z =C1 ∪C2 ∪·· ·∪Cγ−1 (8.2)

where Cx = {xqk mod (qm −1)|k ∈Z} are the cyclomatic cosets of x modulo qm −1. We have
shown that a t-error correcting BCH code (a design distance of 2t + 1) can be constructed
with the parameters (qm −1,k,≥ 2t +1) over GF (q).

32

1.1) Show that the number of cosets are γ−1.

1.2) Show that the cardinality of the coset Cx is m if 1 ≤ x ≤ q⌈m/2⌉.

1.3) Now let us exclude all repeated cyclomatic cosets. Show that the number of redundant
cosets are ⌊(γ−1)/q⌋.

1.4) Finally prove that the dimension of the code k = qm −1−m⌈(γ−1)(1−1/q)⌉

Thus, we have proven the theorem that a primitive, narrow-sense BCH code over GF (q)
with the design distance γ in the range ≤ γ≤ q⌈m/2⌉+1 has the dimension k = qm −1−m⌈(γ−
1)(1−1/q)⌉.

Problem 6: In this problem, we generalize the result of Theorem 3 for arbitrary q . If C is
primitive, narrow sense BCH code of length qm −1 over GF (q) with the design distance γ in
the range ≤ γ≤ q⌈m/2⌉+1 has a minimum distance γ or γ+1 if

V olq (qm −1,⌊(γ+1)/2⌋) =
⌊(γ+1)/2⌋∑

i=0

(
qm −1

i

)
(q −1)i > qm⌈(γ−1)(1−1/q)⌉ (8.3)

Furthermore, if γ≡ 0 mod q , then the minimum distance is exactly γ+1. Let us consider
the asymptotical approximation for the hamming sphere in the above equation by letting
λ= ⌊(γ+1)/2⌋/(qm −1) and show that

f(m) = qmhq (λ)

m
> ⌈

(γ−1)(1−1/q)
⌉

(8.4)

⇒ m = f−1 (⌈
(γ−1)(1−1/q)

⌉)
(8.5)

If 0 ≤λ≤ 1−1/q where hq (.) is the entropy function. This expression is simply saying that
for large block lengths and larger alphabets satisfying the above equation, design distance of
the BCH code becomes the actual minimum distance of the code. For example, RS codes,
being a special case of BCH codes, is an example to this.

Problem 7: As already mentioned in the text, the closed form expressions of Section 5
applies to the form of a generator polynomial g (x) = (x −αa)(x −αa+1) . . . (x −αa+2t−1) where
a = 1. Prove the following extended results for general a ≥ 1.

Ys =−X −(a−1)
s

ϕ(X −1
s)

Λ′(X −1
s)

, for s = 1,2, . . . ,ν (Forney’s algorithm) (8.6)

ei =α−(a−1)i

n

n∑
j=1

E jα
− j (i−1), for i = 1,2, . . . ,n (Frequency domain decoding) (8.7)

Problem 8: Considering the encoding operation of a Cauchy Reed-Solomon Code, we
note that the number of 1s in the binary representation of the generator matrix determines

33

the number of XOR operations i.e., the encoding complexity. Let us define S = {0,α1} and
R = {α2,α3,α4,α5,α6}, we have the following cauchy matrix:

C =
[

1/(α2) 1/(α3) 1/(α4) 1/(α5) 1/(α6)
1/(α+α2) 1/(α+α3) 1/(α+α4) 1/(α+α5) 1/(α+α6)

]
(8.8)

=
[
α5 α4 α3 α2 α

α3 1 α5 α α2

]
(8.9)

which has a binary representation as follows,

C =



1 1 1 0 1 1 1 0 1 0 1 0 0 0 1
1 0 0 1 1 0 1 1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1 1 1 0 1 0 1 0
1 0 1 1 0 0 1 1 1 0 0 1 0 1 0
1 1 1 0 1 0 1 0 0 1 0 1 0 1 1
0 1 1 0 0 1 1 1 0 0 1 0 1 0 1



Note that this binary matrix had 54 ones. The interesting question is are there better cauchy
generator matrices for a given m (less number of ones i.e., that can lead to lower complexity
encoding operation) and the extension field GF (2m). Does the solution change if we change
the primitive polynomial that defines the extension field?

REFERENCES

[1] Irving S. Reed and Gustave Solomon. Polynomial codes over certain Finite Fields. J. Soc.
Indust. Appl. Math., 8(2):300–304, 1960.

[2] Richard E. Blahut, “Algebraic codes for data transmission," (2nd ed.), Cambridge. Univ.
Press., 2003.

[3] R. T. Chien, “Cyclic Decoding Procedures for the Bose-Chaudhuri-Hocquenghem Codes",
IEEE Transactions on Information Theory, IT-10 (4): 357Ű363, ISSN 0018-9448 Oct. 1964.

[4] F. J. MacWilliams, N. J. A. Sloane, “The Theory of Error-Correcting Codes," North-Holland,
New York, 1977.

[5] J. Blömer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, D. Zuckerman, “An XOR-Based
Erasure-Resilient Coding Scheme," ICSI Technical Report No. TR-95-048, August 1995.

[6] R. J. McEliece, “The Decoding of Reed-Solomon Codes," TDA Technical Progress Report
42-95.

[7] Ron M. Roth, “Introduction to Coding Theory," Cambridge. Univ. Press., 2006.

34

[8] D. Mandelbaum, “On decoding of Reed–Solomon codes," IEEE Trans. Inf. Theory, vol. 17,
no. 6, pp. 707Ű712, Nov. 1971.

[9] N. Chen and Z. A Yan, “Complexity analysis of reed-solomon decoding over GF(2m) with-
out using syndromes," EURASIP Journal on Wireless Communications and Networking,
vol. 2008.

35

