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Birth Processes

Pure Birth Process (Yule-Furry Process)

Example: Consider cells which reproduce according to the
following rules:

o A cell present at time t has probability Ah + o(h) of splitting
in two in the interval (¢,t + h)

» This probability is independent of age

« Events betweeen different cells are independent

gl

> Time
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Birth Processes

Pure Birth Process (Yule-Furry Process)

Example: Consider cells which reproduce according to the
following rules:

o A cell present at time t has probability Ah + o(h) of splitting
in two in the interval (¢,t + h)

e This probability is independent of age
« Events betweeen different cells are independent

gl

What is the time evolution of the system?

> Time
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Birth Processes

Pure Birth Process (Yule-Furry Process)

Non-Probabilistic Analysis

e Let n(t) =number of cells at time ¢
e Let X be the birth rate per single cell
Thus ~ An(t)A(t) births occur in (t, t + At)
Then:
n(t+ At) = n(t) + n(t)\At
n(t+ At) — n(t)
At

=n(t)A — Z;’ = n'(t) = n(t)A

« The solution of this differential equation is: n(t) = Ke'
e If n(0) = ng then
n(t) = nge™
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Birth Processes

Pure Birth Process (Yule-Furry Process)

Probabilistic Analysis
Notation:

e N(t) = number of cells at time t
o PIN(t) = n} = Pn(1)

Assumptions:

o A cell present at time t has probability Ah + o(h) of splitting
in two in the interval (t,t + h)

» The probability of more than one birth occurring in time
interval (¢, t+ h) is o(h)

All states are transient
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Birth Processes

Pure Birth Process (Yule-Furry Process)

Assumptions:

e Probability of splitting in (¢, + h): Ah+ o(h)
e Probability of more than one splitin (¢, t + h): o(h)

The probability of birth in (¢, t + h) if N(t) = nis nA\h+ o(h).
Then,

Po(t + h) = Po(t)(1 — nAh — o(h)) + Pa_1(t)((n — 1)Ah + o(h))
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Birth Processes

Pure Birth Process (Yule-Furry Process)

Assumptions:

e Probability of splitting in (¢, + h): Ah+ o(h)
e Probability of more than one splitin (¢, t + h): o(h)

The probability of birth in (¢, + h) if N(t) = nis nA\h+ o(h).
Then,
Po(t+ h) = Po(t)(1 — nAh — o(h)) + Pa_1(t)((n — 1)Ah + o(h))

Po(t + h) — Po(t) = —nARPA(t) + Pa_1(£)(n — 1)Ah + f(h), with f(h) € o(h)
Po(t + h) — Pa(1)

= —nAPy(t) + Pr—1(H)(n— 1A+ @

h h
Let h— 0,

Pp(t) = —nAPu(t) + (n— 1)AP,_1(t)
Initial condition Pp,(0) = P{N(0) = ng} = 1
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Birth Processes

Pure Birth Process (Yule-Furry Process)

Probabilities are given by a set of ordinary differential
equations.
PL(t) = —nAPy(t) + (n — 1)AP,_1(1)
Pny(0) = P{N(0) = np} =1

1
Pn(t) = (:_ no) e Mot — e M) n—=pny ng+1,...

4
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Birth Processes

Pure Birth Process (Yule-Furry Process)

n—1

e Ml — gAY n—pngny4+1,...
n—ng

Pn(t) = (

Observation: The solution can be seen as a negative binomial
distribution, i.e., probability of obtaining ng successes in n trials.
Suppose p =prob. of success and g = 1 — p =prob. of failure.
Then, the probability that the first (n — 1) trials result in (ny — 1)
successes and (n — np) failures followed by success on the nt"

trial is:
n—1 no—1 ~4N—Ngpy n—1 no ~N—no. _
<n_n0>p q p= n—no p°q ' n_n05n0+1a"'

If p=e*Mand g=1- e, both equations are the same.
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Birth Processes

Pure Birth Process (Yule-Furry Process)

¢ Yule studied this process in
connection with the theory of
evolution, i.e., population consists of
the species within a genus and
creation of a new element is due to
mutations.

e This approach neglects the
probability of species dying out and
size of species.

e Furry used the same model for
radioactive transmutations.
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Birth Processes

Pure Birth Processes. Generalization

e In a Yule-Furry process, for N(t) = n the probability of a
change during (t, t + h) depends on n.

« In a Poisson process, the probability of a change during
(t, t+ h) is independent of N(t).

B I N

y

Generalization

» Assume that for N(t) = n the probability of a new change
ton-+1in (¢t t+ h)is \ph+ o(h).
» The probability of more than one change is o(h).
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Birth Processes

Pure Birth Processes. Generalization

Generalization
» Assume that for N(t) = nthe probability of a new change
ton+1in (t,t+ h)is A\ph+ o(h).
» The probability of more than one change is o(h).

Then,

Pn(t+ h) = Pa(t)(1 — Aph) + Pp_1(t)A\n—1h+0o(h), n#0
Po(t + h) Po(t)(1 = Aoh) + o(h)

:>P;7(t) Pn(t)+)\n 1Pn1()
Po(t) = —AoPn(f)

Equations can be solved recursively with Py(t) = Py(0)e 0!
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Birth Processes

Pure Birth Process. Generalization

Let the initial condition be Pp,(0) = 1.

The resulting equations are:

P;,(t) = —)\nPn(t) + Ap_1 Pn,1(t), n> ng
Pry(t) = =Xy Pro ()

Yule-Furry processes assumed A\, = n\ J
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Birth-Death Processes

Birth-Death Processes

» Pure Birth process: If n transitions take place during (0, {),
we may refer to the process as being in state Ej,.

e Changes in the pure birth process:
En— Eny1 — Engo — ...

e Birth-Death Processes consider transitions E, — E,_1 as
wellas E, — Ep 1 ifn>1.1fn=0,only Eg — E; is
allowed.

@Y\_/@W@k/ e Y\_/@k/@k/

Hq Mo M3 Hi Hi+q Hi+2
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Birth-Death Processes

Birth-Death Processes

Markov Process

Birth-Death
process

Poisson
process
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Birth-Death Processes

Birth-Death Processes

If the process at time t is in Ep,, then during (t,t + h):
« Transition E, — E, 1 has probability \,h + o(h)
« Transition E, — E,_1 has probability n.,h + o(h)
» Probability that more than 1 change occurs = o(h).

Pn(t + h) = Pp(t)(1 — Anh — pnh)
+ Pn_1(t)(An—1h) + Pni1(t)(pny1h) + o(h)

Time evolution of the probabilities
= Po(t) = —(An + pn) Pn(t) + An—1Pno1(t) + pn1 Pnya (1)
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Birth-Death Processes

Birth-Death Processes

Forn=0
Po(t+ h) = Po(t)(1 — Xoh) + P1(t)u1h+ o(h)
= Py(t) = —AoPo(t) + p1Pi (1)
o If \g =0, then Ey — E; is impossible and E; is an
absorbing state.

o If \g = 0, then Py(t) = 1 P4(t) > 0 and hence Py(t)
increases monotonically.

lim;_0 Po(t) = Po(o0) = Probability of being absorbed.
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Birth-Death Processes

Steady-state distribution

Po(t) = —AoPo(t) + p1Pi(t)
PL(t) = —(An + 1n) Pn(t) + An—1Pr1(t) + tiny1 Prya (8) J

As t — oo, Py(t) — Pu(limit).
Hence, P}(t) — 0 and P (t) — 0.
Therefore,

0=—XoFPo+ p1Pr

=Py = &Po
111
0=—(M + )P+ AoPo + p2P>
=P, = LO)W Po
114 12

AOATA
:>P3:70 ! 2P0
114 212

etc
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Birth-Death Processes

Steady-state distribution

A1
Pi=20py pp=2Mp, p oMt g
K A 42 A 22
The dependence on the initial conditions has disappeared. J
[e.e]
After normalizing, i.e., > Pp,=1:
n=1
=N
1 5
PO — y Pn - 9 n Z 1
oo n—1 A oo n—1
1+ZHNI7+1 1+ZHH/+1

n=1 i=0 n=1j=
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Birth-Death Processes

Steady-state distribution
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Birth-Death Processes

Example. A single server system

©. "® « constant arrival rate A (Poisson
M arrivals)

« stopping rate of service
] (exponential distribution)
0 |—| o states of the system: O (server
free), 1 (server busy)

~Exp(n) ~Exp(h)

Po(t) = —APo(t) + pPs(t)
Pi(t) = APo(t) — uP(1)
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Birth-Death Processes

Example. A single server system

Po(t) = —=APo(t) + pPi(1) J
’—‘ ’—‘ Pg(t):APO(t)_NPNt)
Given that: Py(f) + Pr(t) -1, Ph() + (A + p)Po(t) = p.

Po(t) = 1+ (Pu() - 1 ) et

Py (t) = A + (p (0) — /\) e~ OFnt

A+ A+

Solution = Equilibrum distribution + Deviation from the
equilibrium with exponential decay. J
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Birth-Death Processes

Poisson Process. Probabilities

Poisson Process
e Birth probability per time unit is constant A
e The population size is initially 0

e

All states are transient

Pi(t) = —=APi(t) + AP;i_4(t), i>0
Po(t) = —APy(1)
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Birth-Death Processes

Poisson Process. Probabilities

Pi(t) = —APi(t) + APi_1(t), i>0
Po(t) = =Py (1)

= Po(t) —e M

t
gt[e“Pf(fﬂ = AP_1(1)eM = P(t) = e\ /0 Pii(t)eM df

t
Pi(t) = e‘“A/ e MMl = e M(At)
0

i
Recursively: P;(t) = (/\i—f)e‘“
Number of births in interval (0, t) ~ Poisson(\t).
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Birth-Death Processes

Pure Death Process. Probabilities

Pure Death Process
¢ All the individuals have the same mortality rate u
e The population size is initially n

©._ 0. & . O 0

3u (n-1)p nu
State 0 is an absorbing state. The rest are transient.

Ph(t) = —nuPn(t)
Pi(t) = (i + )Pt (f) — ipPi(t), i=0,...,n— 1
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Birth-Death Processes

Pure Death Process. Probabilities

Pr(t) = —nuPr(t)
Pi(t) = (i + 1)uPiyq (f) — inPi(t), i=0,...,n—1

= Pn(t) = e_n”t
t
%[e’”’Pf(t)] = ()P (e = P(t) = (i+1)e" " / Piaa(t)e" o
0

t
Pn,1(t) = ne‘("-ﬂuf'u/ e—nut’e(n—1)/n’dt/ _ ne‘(”—‘)ﬂf(1 B e"“)
0
. n : g
Recursively: Pi(t) = (i>(e—ut)l(1 — gntyn=i

Binomial distribution: The survival probability at time t is e=#!
independent of others.
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Relationship to Markov Chains

Relation to CTMC

Infinitesimal generator matrix:

—Ao Ao 0 .
o —(A A+ ) A 0
a=1| 0 2 —(A2 + p2) A2 0
: 0 /3 ~(As+musz) Az O
o M ) Mg Aj s
@M/ @w @M/ T V\_/@V @M/
Hq Ho H3 M Hi+q Hi+2
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Relationship to Markov Chains

Relation to DTMC

Embedded Markov chain of the process.
For t — oo, define:

P(En+1|En) = Prob. of transition E;, — Ep; 1
= Prob. of going to E,,, 1conditional on being inE,

Define P(E,_1|Ep) similarly. Then

P(En+1 ’En) “ An, P(En—1 ‘En) " n
)\n ,Un
,P(En_1|En) =
>\n“|‘/,tn ( n 1| n) An +“n

The same conditional probabilities hold if it is given that a
transition will take place in (t, t + h) conditional on being in Ej,.

P(Eny1|En) =
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Linear Birth-Death Processes

Linear Birth-Death Processes

Linear Birth-Death Process
L4 ‘Xn = ,7A

° fin = Np

= Ph(t) = 1Py (1)
Pot) = ~(\-+ 1)nPa(t) + A= 1)Pa_1(8) + (0 + 1)Pr (1)

Steady state behavior is characterized by:

lim Py(t)=0 = Pi(cc)=0
t—o0

Similarly as t - oo Pj(c0) =0
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Linear Birth-Death Processes

Linear Birth-Death Processes

Steady state behavior is characterized by:

lim Py(t) =0 = Pi(c0) =0
t—o0

Similarly as t — oo Pj(c0) =0

Two cases can happen:

e If Py(c0) =1 = the probability of ultimate extinction is 1.

o If Py(c0) = Py < 1, therelations Py =P, =P3...=0
imply with probability 1 — Py that the population can
increase without bounds.

The population must either die out or increase indefinitely. )
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Linear Birth-Death Processes

Mean of a Linear Birth-Death Process

Pp(t) = —(A+ p)nPn(t) + Mn = 1)Pp_q(t) + p(n + 1)Prpa (1) |

Define Mean by M(t) = i nPn(t)
n=1

and consider M'(t) = f nPy(t), then:
n=1

M(t) = —(\ + p) i P, (t) + A i(n — 1)nPy_1(t)
n=1 n=1

301+ 1) (D)

n=1

Write (n—1)n= (n—1)2+(n—1), (n+1)n=(n+1)2—(n+1)
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Linear Birth-Death Processes

Mean of a Linear Birth-Death Process

M(t) = —(Aw)inZPn(t)

+>\Zn—1 (ilﬂﬂ Pn1 t)+P1()>
+)\Z n—1)Pn_( (i (N4 1)Priq(t) + Pi( ))
n=1 n=1

= M(t _AZnP,, — > nPy(t) = (A — p)M(t)
=1

M(t) = nge*=mt if P, (0) =1 )
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Linear Birth-Death Processes

Mean of a Linear Birth-Death Process

o If X < pthen M(t) — 0

Similarly if Mo(t) = > n?Py(t) one can show that:

n=1

Mp(t) = 2(A — p)Ma(1) + (A + ) M(t)

o If A > pthen M(t) — oo }

and when \ > u, the variance is:

ner(/\—u)f (1 _ e(u—/\)f) itz
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Examples

Linear Birth-Death Process. Example

Let X(t) be the number of bacteria in a colony at instant .
Evolution of the population is described by:

« the time that each of the individuals takes for division in
two (binary fission), independently of the other bacteria

o the life time of each bacterium (also independent)
Assume that:

e Time for division is exponentially dist. (rate \)

e Life time is also exponentially dist. (rate )

e If A > u then the population tends to infinity
e If A < p then the population tends to 0
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Examples

A queueing system

SseIvers

@—’ o Sservers

K places K waiting places
H ‘ ‘ \ \ « ) arrival rate (Poisson)
e 1 Exp(p) holding time

@_} (expectation 1/p)

Is it a birth-death process? J
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Examples

A queueing system
(— e
O
Ongi

S servers
K waiting places
A arrival rate (Poisson)

w Exp(r) holding time
(expectation 1/u)
Let “N =number of customers in the system” be the state variable.

e N determines uniquely the number of customers in service
and waiting room.

» After each arrival and departure the remaining service
times of the customers in service are Exp(u) distributed
(memoryless).

ot arohah gt st el 7kt
N W W ¥ - W - W Y —

Boo2p 3p 4p 4p 4p 4 4p 4p
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Examples

Call blocking in an ATM network

An ATM network offers calls of two different types.

Ry = 1Mbps R> = 2Mbps
A1 = arrival rate Ao = arrival rate
11 = mean holding time 12 = mean holding time

Assume that the capacity of the link is infinite:

Is it a birth-death process? |
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Examples

Call blocking in an ATM network

An ATM network offers calls of two different types.

Ry = 1Mbps R, = 2Mbps

A1 = arrival rate Ao = arrival rate

w1 = mean holding time w2 = mean holding time

Assume that the capacity of the link is infinite:
n2

ICQTJQTJO/J g+ g
B
SV T
(IR o

N1

The state variable is the pair (N, No) where N; defines the number of

class-i connections in progress. .



Examples

Call blocking in an ATM network

An ATM network offers calls of two different types.

R> = 2Mbps
Ao = arrival rate
12> = mean holding time

Ry = 1Mbps
A1 = arrival rate
11 = mean holding time

Assume that the capacity of the link is limited to 4.5 Mbps

Is it a birth-death process? |
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Examples

Call blocking in an ATM network

An ATM network offers calls of two different types.

Ry = 1Mbps R> = 2Mbps
A1 = arrival rate Ao = arrival rate
w11 = mean holding time (2 = mean holding time

Assume that the capacity of the link is limited to 4.5 Mbps

Ny

?
?

) SN SR SEELe S
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Examples

Exercise 1

Process definition

e There are two transatlantic cables each of which handle
one telegraph message at a time.

e The time-to-breakdown for each has the same exponential
random distribution with parameter .

» The time to repair for each cable has the same exponential
random distribution with parameter .

v

Tasks:

« Draw the corresponding birth-death process.

o Write its infinitesimal generator.

« Write differential equations for the probabilities.
o Compute the steady state distribution
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Examples

Exercise 2

Birth-disaster process

Consider that X; is a continuous-time Markov process defined
as follows:
e Each individual gives a birth after an exponential random
time of parameter )\, independent of each other.
« A disaster occurs randomly at exponential random time of
parameter §.
» Once a disaster occurs, it wipes out all the entire
population.

Tasks:

» What is the infinitesimal generator matrix of the process?
¢ What is the time evolution of M(t) = E[X}]?
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