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Redundancy and Aging of Efficient Multidimensional
MDS Parity-Protected Distributed Storage Systems
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Abstract—The effect of redundancy on the aging of an efficient
maximum distance separable (MDS) parity-protected distributed
storage system that consists of MDS-parity protected array of
storage units is explored. In light of the experimental evidences
and survey data, this paper develops generalized expressions for
the reliability of array storage systems based on more realistic time
to failure distributions such as Weibull. For instance, a distributed
disk array system is considered in which the array components are
disseminated across the network and are subject to independent
failure rates. Based on such, generalized closed-form hazard rate
expressions are derived. These expressions are extended to esti-
mate the asymptotical reliability behavior of large-scale storage
networks equipped with MDS parity-based protection. Unlike
previous studies, a generic hazard rate function is assumed, a
generic MDS code for parity generation is used, and an evaluation
of the implications of adjustable redundancy level for an efficient
distributed storage system is presented. Results of this paper are
applicable to any erasure correction code as long as it is accom-
panied with a suitable structure and an appropriate encoding/
decoding algorithm such that the MDS property is maintained.

Index Terms—Aging, big data management, error correction
coding, hazard rate, redundant array of inexpensive/independent
disks (RAID), reliability.

I. INTRODUCTION

ONE of the well known problems associated with parity-
based redundant array of inexpensive disk (RAID) sys-

tems [1] is their vulnerability against multiple disk failures,
mostly after which a restore mechanism is initiated and sub-
sequent read errors inevitably occur due to lot of repeated
reads. Similar trends can be observed in arrays of solid state
drives (known as RAIS) for mass storage applications [2]. The
statistical likelihood of multiple drive failures has never been
a significant issue in the past. Over the years however, with
the advanced technology, drives of few terabyte capacities are
now put on sale. The scale of storage systems continues to grow
to store peta-bytes of data and the likelihood of multiple drive
failures become a reality. This led to the development of error
checking and validation routines to maintain the data integrity.
Conventional approach for data retention was to address the
big data protection shortcomings of RAID by replication, a
technique of making additional copies of data to avoid unrecov-
erable errors and lost data. Organizations also used replication
schemes to help with failure scenarios, such as location specific
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failures, power outages, bandwidth unavailability, and so forth.
However, as the size of the stored data scales up, the number
of copies of the data required for robust protection grows. This
increases the amount of inefficiency by adding extra cost to the
overall system. Since replication leads to extremely inefficient
use of system resources, parity-based protection using error
correcting codes is more popular.

Drive failures can be regarded as arrivals of a renewal process
characterized by a rate parameter. The drive failure rate, using a
homogenous Poisson process, is the reciprocal of the mean time
to failure (MTTF) numbers reported by the drive manufactures
[3]. One of the earliest studies of the reliability analysis for
disk array systems considered various RAID hierarchies and
hot spots [4]. In a number of successive works, stripping is used
to provide cost-effective I/O systems [1], [5] for seemless and
reliable access to the user data. Most of the previous research
modelings were based on single or double–parity schemes such
as RAID 5 or RAID 6 in which maximum distance separable
(MDS) codes are used for storage efficiency. MDS codes have
the nice property that for a given array and parity size they
allow maximum amount of recovery [6]. However, these studies
mostly assume a Poisson process characterized by a constant
failure rate of small size and cost–effective disk components.
Unfortunately, these set of assumptions are shown to be unreal-
istic [7], [8]. In fact, an interesting observation is that the failure
rates are rarely constant [8], [9].

There have been efforts in industry as well as in academia
for accurately predicting the reliability of large-scale storage
systems in terms of mean lifetime to failure rates. For example,
an accurate yet complicated model is developed to include
catastrophic failures and usage dependent data corruptions in
[10]. The authors specifically pointed out that component fail-
ure rates have little, if not any, to share with the failure rate
of the whole storage system. The times between successive
system failures are reported to be relatively larger than what
conventional models suggest, even though each component disk
hazard rate is increasing [11]. Disk scrubbing is introduced and
used in [12] as a remedy for latent defects that are usually
independent of the size, use and the operation of disks. The
latter study also uses homogenous Poisson model for reliability
estimations.

It is clear that excessive failures (failures beyond the cor-
rection capability of the system) in any storage system are of
particular interest because they may cause both unavailability
and permanent data loss. On the other hand, the trend in the
market is to grow the scale of distributed storage arrays in which
the capacity as well as the reliability of each storage component
almost double every year. Therefore, a true and accurate failure
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modeling shall be of great significance from a system design
standpoint. For example, a generic hazard rate function λ(x)
and an associated non-homogenous Poisson model might be a
better fit for predicting the real life disk failure trends. However,
as more real life scenarios are incorporated with these improved
mathematical methods for accuracy, they inexorably become
complex. From a customer’s perspective, short-hand closed-
form expressions for predicting the system failure rates might
be more useful for delivering performance figures about the
system reliability.

In this study, an efficient MDS-parity based distributed disk
array system is considered using general failure processes. One
of the contributions of this paper is a set of useful closed-form
expressions, derived by considering the whole lifespan of com-
ponent drives based on the recent survey data on disk failures
and time to failure probability distributions [8], i.e., without
assuming constant component hazard rates. Some asymptotical
results (the array size tends to infinity) shed light for the
limiting behavior of RAID type systems. Those results might
particularly be important for predicting what is achievable using
MDS codes, as the scale of the coded storage systems grow
for the management/maintenance of the so called “Big data.”
The paper also investigates the relationship between the ag-
ing and the redundancy used for data protection. Here, the
efficiency of the distributed storage system comes rather from
the efficient allocation strategy such that independent drive
failure assumption is roughly correct for each component of
the array, which are shared by different storage network nodes.
It is further shown that the multidimensional array storage is
offering a good tradeoff between complexity and performance
which may otherwise be obtained by a large array of one
dimensional RAID type systems at the expense of increased
cost and complexity. Although the main objective of the paper
is focused on the mean time to first failure, the expressions can
be extended to mean time between failures and mean time to
data loss performance metrics. However, derived expressions
might either not be in simple form or expressible in a closed-
form for an arbitrary hazard rate function λ(x) and a repair rate
function μ(x).

The remainder of this paper is organized as follows.
In Section II, a brief introduction is given about the reliability
theory basics as well as the drive failure statistics in real world.
Moreover, the storage system details are summarized along
with the assumptions used in this work. In Section III, main re-
sults of the paper are given based on arbitrary hazard rates using
multidimensional arrays. This section starts with considering
1-D arrays and then generalizes the results for multidimen-
sional arrays. Some of the numerical results and relevant ex-
amples are given in Section IV. Finally, a brief summary and
conclusions follow in Section V. The proofs are included in
Appendices A–C in order to highlight the main contributions of
the paper.

II. BACKGROUND AND SYSTEM DIAGRAM

A. Reliability Theory

When a brand new product is put into service, it performs
functional operations satisfactorily for a period of time, called

useful time period, before eventually a failure occurs and the de-
vice is no longer able to respond to user requests. The observed
time to failure (TTF ) is a continuous random variable with a
probability density function fTTF(x), representing the lifetime
of the product until the first failure. The failure probability
of the device can be found using the cumulative distribution
function (CDF) of TTF as follows,

FTTF (x) = Pr{TTF ≤ x} =

x∫
0

fTTF (y)dy, x > 0. (1)

We can think of FTTF(x) as an unreliability measure be-
tween time 0 and x. The reliability function S(x) is therefore
defined by,

S(x)
Δ
= 1 − FTTF (x) =

∞∫
x

fTTF (y)dy. (2)

In other words, reliability is the probability of having no
failures before time x and is related to CDF of TFF through
(2). Note that (2) implies that we have fTTF(x) = −dS(x)/dx.
It may not be possible to estimate the distribution function of
TFF directly from the available physical information. A useful
function in clarifying the relationship between physical modes
of failure and the probability distribution of TFF is known
as the hazard rate function or failure rate function, denoted as
hTTF(x). This function is defined to be of the form

hTTF (x)
Δ
=

fTTF (x)

S(x)
= − dS(x)

S(x)dx
. (3)

Solution of the first order ordinary differential equation (3)
yields the relationship hTTF(x) = −d(ln(S(x)))/dx with the
initial condition S(0) = 1. Note that knowing the hazard rate
is equivalent to knowing the distribution. Mean time to failure
(MTTF) is defined to be the expected value of the random
variable TTF and is given by

MTTF
Δ
= E[TTF ] =

∞∫
0

S(x)dx ⇔ lim
x→∞

xS(x) = 0 (4)

where E[.] is the expectation operator. Note that (4) is true for
distributions whose mean exists. For the rest of our discussion,
the subscript TTF is dropped for notation simplicity and
throughout the text, hTTF(x) is alternatively denoted by λ(x).

Annualized failure rate (AFR) is frequently used to estimate
the failure probability of a device or a component after a full-
time year use. In the conventional approach, time between
failures are assumed to be independent and exponentially
distributed with a constant rate λ. Therefore AFR is given
by AFR = 1 − S(x) = 1 − e−λx, where λ = 1/MTTF and
x is the running time index in hours. MTTF is reported in
hours and since there are 8760 hours in a year, AFR =
1 − e−8760/MTTF . Typical numbers reported in disk vendor’s
specifications are MTTF ≈ 1 million hours or 1.5 million
hours. Since 8760/MTTF � 1, AFR ≈ 8760/MTTF . As
mentioned before, such rough calculations and assumptions
may not be representing how the drives behave in real world [8].
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Fig. 1. Hazard rate pattern for hard disk drives as a function of operation
time [13].

Clearly, one needs general but yet adequately simpler expres-
sions to predict the lifetime trends of such systems, particularly
for large-scale storage applications.

B. Drive Failures in Real World

It is shown in various research articles that average replace-
ment rate of component disks is around twenty times much
greater than are the theoretically predicted MTTF values i.e.,
predicted MTTF values are observed to be an underestimator
[8], [13]. It is demonstrated that disk failure rates show a
“bathtub” curve as shown in Fig. 1. Additionally, contrary to
conventional homogenous stochastic models, hard disk replace-
ment rates do not enter into steady state. After few years of
use, drives (majority of which are disks) are observed to enter
into wear-out period in which the failure rates steadily increase
over time. Time between failures are shown to give much better
fit with Weibull or gamma distributions instead of widely used
exponential distribution [8]. There is a considerable amount of
evidence that disk failures that are placed in the same batch
show significant correlations, which is hard to quantify in a
number of applications [14].

C. Efficient Storage System Summary

A series of parallel array of storage units (such as disk drives)
is shown in Fig. 2(a). Drives are assumed to be manufactured
identically and share the same failure/hazard rate function λ(x).
The kh × kv data matrix is encoded using two different block
MDS codes in order to create a 2-D array. Horizontally, the
parity information type-1 is computed using a (nh, kh, th + 1)
MDS code which can correct up to th erasures per block. It
is due to the MDS property that it is the maximum number
of erasures that a (nh, kh) block code can correct. Then, the
computed parities are allocated to different disk units and oc-
cupy a fraction of the storage space of the disk array to protect
the system against various types of system and disk failures. In
addition to horizontal encoding, the parity information type-2
is computed using another (nv, kv, tv + 1) MDS code which
can correct up to tv erasures per vertical block. This encod-
ing procedure can be performed repeatedly to protect larger
dimensional data sets. The order of encoding does not matter
as long as the code is a linear block code. A generalization of

such an encoding scheme for three dimensional data is depicted
in Fig. 2(b). Finally, encoded data units are allocated into the
network storage nodes according to a genuine allocation policy
that will keep

(I) the read and write process simple,
(II) the number of storage nodes needed to be accessed

for the reconstruction of user/parity data minimum at a
reasonable time complexity

(III) drives in the horizontal or vertical arrays (for 2-D array
case) not shared by the same node of the distributed
storage system.

These set of assumptions also help us make independent
failure assumptions between the component drives of an array
while in the mean time facilitate the rest of our analysis. For
example, there is a class of MDS codes introduced in [15], for
which the item (II) can be satisfied.

III. DISK ARRAYS WITH INDIVIDUAL INDEPENDENT

ARBITRARY HAZARD RATES

In the rest of our discussions, an allocation policy and a
generic MDS code are assumed such that conditions (I), (II),
and (III) are satisfied. Therefore, the rest of the discussion is
based on the independent failure statistics assumption between
respective drives of the storage array. A series of parallel arrays
of disks is considered in which each array contains n disks or
drives to store the encoded user data information. Let us use a
common notation (n, k, t+ 1) where t = n− k for the MDS
code in order to make it general and applicable to each and
every dimension to which erasure coding is applied.

A. A Horizontal System and Componentwise Reliability

Let us consider a 1-D array of storage units. Note that
the results of this subsection can be applied to other arrays
of different dimensions. This subsection starts with stating
our main theorem below that bridges the relationship between
redundancy and aging of MDS parity-based arrays.

Theorem 1: Hazard rate per data component of a horizontal
system (consisting of n independent components k of which are
data, each component having an arbitrary but the same failure
rate of λ(x)), coded with a generic (n, k, t+ 1) block MDS
code with rate r = k/n (t = n− k parity units) is given by

μc(x, n, r) =
λ(x)

r

(
1 − ψt−1 (n− 1, λ(x))

ψt (n, λ(x))

)
(5)

where

ψt (z, n, λ(x))
Δ
=

t∑
i=0

(
n

i

)(
i

z

)
(1 −R(x))i R(x)n−i,

R(x) = e
−
∫ x

0
λ(y)dy is the reliability of constituent compo-

nents with hazard rate λ(x) and ψt(n, λ(x))
Δ
= ψt(0, n, λ(x))

is the cumulative distribution function of the binomial distri-
bution. Furthermore, the following inequality is satisfied for
0 ≤ t ≤ n− 1,

max

{
0,

1 −R(x)/r

1 −R(x)

}
≤ μc(x, n, r)

λ(x)
. (6)
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Fig. 2. Assume that the storage units are disks. (a) Parallel series of disk arrays that that makes up one disk matrix to be distributed over the network nodes.
Each block represents a disk belonging to one of the parity types [13]. (b) A set of these disk matrices are used for storing large scale data using MDS encoding
along each dimension.

Proof: See Appendix A.
Two cases shed some interesting light to this relationship.

Consider the case with t = 0 and r = 1, i.e., no redundancy. In
this case, since ψt−1(n− 1, λ(x)) = 0 we have μc(x, n, 1) =
λ(x) as expected. In other words, the hazard rate of the hori-
zontal system per component is the same as the hazard rate of
the constituent components when there is no redundancy. On
the other extreme, we could have t = n− 1 and r = 1/n using
replication. In this case, the hazard rate per data component is
given by the following corollary.

Corollary 2: Using a (n, 1, n) block MDS code, known as
repetition code, the hazard rate per data component is given by

μc(x, n, 1/n) =
nλ(x)R(x) (1 −R(x))n−1

1 − (1 −R(x))n
(7)

where R(x) = e
−
∫ x

0
λ(y)dy is the reliability of constituent com-

ponents with hazard rate λ(x).
Proof: Let us set t = n− 1, we have

ψn−1 (n, λ(x)) =ψn (n, λ(x))− (1 −R(x))n

= 1 − (1 −R(x))n (8)

ψn−2 (n− 1, λ(x)) =ψn−1 (n− 1, λ(x))− (1 −R(x))n−1

= 1 − (1 −R(x))n−1 . (9)

The result will follow through some algebraic manipulations
by plugging (8) and (9) into (5). �

A well known binary linear block MDS code is the parity
code in which there is only one parity symbol i.e., t = 1 and
r = (n− 1)/n. Following corollary characterizes the hazard
rate of 1-D array using parity coding.

Corollary 3: Using a (n, n− 1, 2) binary block MDS code,
known as parity code, the hazard rate per data component of a
horizontal block is given by

μc(x, n, 1 − 1/n) =
λ(x)n (1 −R(x))

n (1 −R(x)) +R(x)
(10)

where R(x) = e
−
∫ x

0
λ(y)dy is the reliability of constituent com-

ponents with failure rate λ(x).
Proof: We recognize that for t = 1 and,

ψ0 (n− 1, λ(x)) =R(x)n−1 (11)

ψ1 (n, λ(x)) =R(x)n + n (1 −R(x))R(x)n−1. (12)

By plugging (11) and (12) into (5), with r = 1 − 1/n,
we have

μc(x, n, 1 − 1/n) =
λ(x)

r

(
1 − 1

R(x) + n (1 −R(x))

)
(13)

=
λ(x)n

n− 1

(
(n− 1) (1 −R(x))

R(x) + n (1 −R(x))

)
(14)

=
λ(x)n (1 −R(x))

n (1 −R(x)) +R(x)
(15)

as desired. �
In Theorem 1, if R(x) ≥ r, the lower bound becomes zero,

whereas if R(x) < r, the lower bound takes on a non-zero
value. Let us define a system to be componentwise reliable (CR)
if the hazard rate per drive component is zero or close to zero
although the hazard rate of the whole system might be non-zero.
Therefore, an interesting question is whether the lower bound
of Theorem 1 is achievable for any real value of R(x) and r as
n grows large. This question will be explored next.

B. Asymptotical Hazard Rate Expressions

Regardless of the reliability distribution model used, as
x → ∞, the reliability of constituent components, R(x) tends
to zero. Therefore, one of the information Theorem 1 conveys
is that for a fixed block length of n, if we let R(x) → 0, we
have the following lower bound,

lim
x→∞

μc(x, n, r) ≥ λ(x). (16)
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Fig. 3. (a) Asymptotic per component hazard rate when R(a) = 1/q where q = 3/2 using an MDS code. (b) Asymptotically achievable bound as a function of
rate r and q. As can be seen as q gets larger, the hazard rate per component tends to λ(x) and become less dependent on rate. λ(a) = 0.01 is assumed.

Therefore, one might expect gains due to erasure coding in
the infant mortality and useful time period, but not much in long
term wear-out periods for 1-D arrays. As the number of compo-
nent disks increases with the growing need for big data storage,
the corresponding system reliability might be going down. It
is of interest therefore to look at the asymptotic behavior, i.e.,
n → ∞ of these reliability expressions at different times x.

Let us start with evaluating the asymptotic behavior n →
∞ for a finite non-zero value of a such that R(a) = 1/q for
q = 2, 3, . . .. In other words, for a given λ(x), find a such that∫ a

0 λ(y)dy = ln q. For this special case, we have the following
asymptotic result that shows the lower bound of Theorem 1 is
achievable.

Theorem 4: Asymptotic hazard rate per data component of
a horizontal system (as n → ∞, each component having an
arbitrary but the same failure rate of λ(x)), coded with a generic
(n, k, t+ 1) MDS block code with a fixed rate r = k/n is
given by

μc(a, n, r) =

{
λ(a)(qr−1)

r(q−1) if r ≥ R(a) = 1
q

0 Otherwise
(17)

where a satisfies the relationship
∫ a

0 λ(y)dy = ln q for a given
positive integer q > 1.

Proof: See Appendix B. The proof also conjectures that
this theorem can be extended to any q ∈ R, q > 1.

For r ≥ 1/q, let us divide both the numerator and denumera-
tor by qr and replace q with 1/R(a). We will have μc(a, n, r) =
λ(a)((1 −R(a))/r)/(1 −R(a)). Yet, this is the lower bound
predicted by Theorem 1 evaluated at point x = a. Therefore,
Theorem 4 proves that the lower bound of Theorem 1 is achiev-
able for a countably infinite number of values of R(x). We also
conjecture that the lower bound of Theorem 1 is achievable for
any value of R(x) i.e., for any q ∈ R, q > 1. Let us provide an
example to support this conjecture by setting q = 3/2, a non-
integer value, and λ(argmina{|

∫ a

0 λ(y)dy − ln q|}) = 0.01 is
fixed for simplicity. We plot the asymptotic result, the lower
bound due to Theorem 1 as well as the actual computation
in Fig. 3(a). As can be seen asymptotic result of Theorem 4
achieves the lower bound of Theorem 1 for r ≥ 2/3, below
which we have a CR system if n is very large. However, if
n = 50 or n = 300 we observe some performance loss and

in order to obtain a CR system we must have r ≤ 0.12 and
r ≤ 0.46, respectively.

So far, we have assumed that the size of the array n is
increased for a given fixed value of R(x). If R(x) → 0 i.e.,
q → ∞, we can see that the hazard rate per component of an
MDS-protected array will converge to λ(x). This is shown for
a fixed value λ = 0.01 in Fig. 3(b). Yet, a general practice
should be adaptively increasing the size n as R(x) tends to
zero i.e., as the reliability of components go down with time.
The following theorem characterizes this scenario with the
assumptions of an adaptive system: limn→∞

x→∞
nR(x) < ∞ and

limn→∞
x→0

n(1 −R(x)) < ∞ and shows that a CR system is
possible for large-scale storage even if the component drives
are in their wear-out period.

Theorem 5: if limn→∞
x→∞

nR(x) < ∞ and limn→∞
x→0

n(1 −
R(x)) < ∞, asymptotic hazard rate per data component of
a horizontal system (as n → ∞, each component having an
arbitrary but the same failure rate of λ(x)), coded with a generic
(n, k, t+ 1) MDS block code with a fixed rate r = k/n is
given by

lim
n→∞
x→a

μc(x, n, r) =
λ(x)C(x, r, a)

n
(18)

where

C(x, r, a) =

{
1/r if a = ∞

1−R(x)
(R(x)−r)(2R(x)−r−1) if a = 0.

Proof: See Appendix C.
The amount of redundancy has a positive effect on the

component hazard rate λ(x) for this particular scenario. For a
fixed n, the hazard rate for overall disk array was found to be
scaling with rnλ(x) if n → ∞ first, then R(x) → 0. On the
other hand if R(x) → 0 and n → ∞ at the same time such
that their product stays constant, this hazard rate converges
to λ(x), i.e., k = rn times less than that of the fixed n case.
Large block length improves the reliability performance at the
expense of increased complexity. Note also that although the
per component hazard rates might be tending to zero, the overall
array hazard rate is nonzero.
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The results of this subsection establishes an important rela-
tionship between the concept of CR and the rate r of the MDS
code used. However, we assumed that the rate r is fixed through
the whole lifespan of the storage system. Thus, it is easy to
see that at some point in time x′ we will have r > R(x′) and
μc(x

′, n, r) �= 0 even if n → ∞. Thus in order to obtain a CR
system at all times, MDS codes with time varying rate r(x)
might be quite useful. In fact, there are asymptotically MDS
codes called fountain codes that can be a perfect fit for this
particular scenario [16]. Using such codes, rate can be adjusted
on the fly such that r(x) ≤ R(x) is satisfied for all x if the
condition of CR is strictly imposed on the design throughout
the lifespan of the storage system. The design of such codes
that also respects the set of assumptions (I), (II), and (III) for
the particular application is beyond the scope of this paper.

C. Multidimensional Disk Arrays

Although the potential for a CR system is shown using
large 1-D MDS-protected arrays, the implementation details
and real life conditions make it impractical to achieve idealized
performance benefits. Therefore, different directions must be
taken for practical means such as multidimensional arrays using
MDS codes. This is one of the natural ways to construct long
blocks of many drives that can help us realize the asymptotical
results derived in the previous subsection.

Previous section considered replaceable drive components in
a 1-D horizontal structure and posed the question for any type
of MDS code of rate rh. Let us assume that we have a series of
such parallel blocks of drives of hazard rate khμc(x, nh, rh) as
shown in Fig. 2(a), generated by another MDS code of rate rv .
In other words, we have nv 1-D arrays of size nh drives each,
such that if more than nv(1 − rv) blocks fail, it will lead to
the whole system failure. This is due to the MDS property of
the erasure correction coding. Furthermore, we assume inter-
block failure independence and if a horizontal block fails, all
the constituent disks are assumed to be failed. For a general
case, this type of decoding procedure corresponds to the failure
of T-D disk array, if at least one (T-1)-D disk array fails.
More complicated decoding procedures can be employed for
better performance at the expense of increased implementation
complexity.

Let μc(x, nhnv, rhrv) be the hazard rate per data component
of the 2-D disk array. Using the result of Theorem 1, we shall
obtain

μc(x, nhnv, rhrv) =
μc(x, nh, rh)

khrv

×
(

1 −
ψ(1−rv)nv−1 (nv − 1, khμc(x, nh, rh))

ψ(1−rv)nv
(nv, khμc(x, nh, rh))

)
. (19)

The result follows from Theorem 1 by replacing λ(x) with
khμc(x, nh, rh) and n with nv . Finally, the system failure
rate is divided by the total number of data disks in a hor-
izontal array. This expression is indeed a special case of
the following more general result on T-D disk array system
encoded with a set of MDS block codes with parameters
{(n1, r1), (n2, r2), . . . , (nT , rT )}. Note that 3-D case is shown
in Fig. 2(b) and larger dimensional generalizations are possible
yet are hard to visualize.

Theorem 6: For T-D MDS-protected system of drives or
disks, we have the following recursive formulation that estab-
lishes the relationship in terms of the per component rate of
(T-1)-D array,

μc(x, n1,T , r1,T )

=
μc(x, n1,T−1, r1,T−1)

r1,Tn1,T−1
(20)

×
(
1−

ψ(1−rT )nT−1(nT −1, k1,T−1μc(x, n1,T−1, r1,T−1))

ψ(1−rT )nT
(nT , k1,T−1μc(x, n1,T−1, r1,T−1))

)
(21)

where n1,s
Δ
=

∏s
i=1 ni, r1,s

Δ
=

∏s
i=1 ri and k1,s = r1,sn1,s.

Proof: (sketch) Proof follows from Theorem 1 by re-
placing λ(x) with k1,T−1μc(x, n1,T−1, r1,T−1) in which μc(x,
n1,T−1, r1,T−1) is the hazard rate per component for (T-1)-D
parity protected system and k1,T−1 is the number of data
component disks. In this case, the result of Theorem 1 can
be applied to compute the hazard rate of a disk hyperplane of
dimension T-1. In order to find the hazard rate per component,
we divide the overall hazard rate function by the number of
components k1,T−1. We eventually obtain the result using the
fact r1,T−1rT = r1,T . �

IV. EXAMPLES AND NUMERICAL RESULTS

In this section, results will be provided for some of the
special cases for finite block lengths so that a comparison can be
made with asymptotical results. Reliability of multidimensional
arrays will be compared in terms of component as well as array
level hazard rates.

1) Constant Hazard Rate Components With r = 1/n: Con-
sider a parallel block and the non-aging components with a
constant and identical rate i.e., λ(x) = λ. Using Corollary 2
and R(x) = e−λx for constant rate λ(x) = λ, as derived in [17],
we have

μc(x, n, r) =
nλe−λx(1 − e−λx)n−1

1 − (1 − e−λx)n
. (22)

Note that this constant failure rate assumption was orig-
inally used by manufactures to predict the failure trends.
Equation (22) can be approximated as μc(x, n, r) ≈ nλnxn−1

when x � 1/λ. As x → ∞, the hazard rate converges to λ,
achieving the lower bound of Theorem 1. In its early use, the
system failure rate grows as a power function of age which is
known as the Weibull law. This means that using more redun-
dancy within the block triggers aging although the constituent
parts are non-aging components.

2) Non-Constant Hazard Rate Components Using Arbitrary
r: Let us consider a general form of λ(x) that is in bathtub
shape using a composite distribution model1 given by

λ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1t
β1−1

θβ
1

if 0 < t ≤ t1

β2t
β2−1

θ
β2
2

if t1 < t ≤ t2

β3t
β3−1

θ
β3
3

if t > t2

(23)

1A Weibull hazard function is used to model three different periods of failure
processes by appropriately choosing the parameters of the distribution.
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Fig. 4. Hazard rate function per component for 1-D disk array system as a
function of time with and without coding. λ(x) is assumed to be a simple
bathtub curve obtained by using a composite distribution based on Weibull
models. Let us assume n = 100 disks per array.

with the corresponding reliability function,

R(x) =

⎧⎪⎪⎨
⎪⎪⎩

e
−
(

x
θ1

)β1−1

if 0<t≤ t1

e
−
(

x−t1
θ2

)β2−1
−
(

t1
θ1

)β1−1

if t1<t≤ t2

e
−
(

x−t2
θ3

)β3−1
−
(

t2−t1
θ2

)β2−1
−
(

t1
θ1

)β1−1

if t>t2.
(24)

For useful life period (random failure process) between time
t1 and t2, let us set β2 = 1 and θ2 = 200. For the early
life (infancy), we use β1 = 0.5 and θ = 100 to model the
decreasing failure rates. In order to model the wear-out period,
let us set β3 = 2.5 and θ3 = 500. An example is shown in
Fig. 4 for an array of disks (n = 100) using MDS codes with
different rates. As predicted by asymptotical expressions, for
x → 0 we have μc(x, 100, r) → 0 and for x → ∞ we have
μc(x, 100, r) → λ(x). This figure also suggests that there is
a key number of parities such that the useful life time period
can be widened i.e., we have constant failure rates for longer
period of time with coding. Another interesting observation
is that coded system improves the wear-out period only if
exceeding number of parities are used i.e. a rate of 1/10 gives
us a reasonable improvement although the aging can be greatly
reduced at early life period for each component disk.

In the next set of results, let us compare 1-D array of n = 300
disks in which half of the disks are dedicated to parity to a
2-D array of disks of the same size and relative redundancy,
encoded with (25, 15, 11) and (12, 10, 3) MDS codes both
in horizontal and vertical directions, respectively. Let us focus
on array hazard rates i.e., data loss rate rather than individual
disk hazard rates and assume independence. The results are
presented in log-log scale in Fig. 5. As can be seen, using a 2-D
coding structure the data loss rate can greatly be lessened. In
fact, since the block length and the rate of the component codes
of the 2-D MDS code are reduced, some performance loss is
observed at the infancy period. However, 2-D structure might
be easier to implement as the MDS codes of shorter length and
larger rate are utilized.

Let us look at the individual data component disk hazard
rates for a 3-D structure with an overall rate 0.4 and n =

Fig. 5. Array hazard rate function using different MDS codes and structures.
λ(x) is assumed to be a simple bathtub curve obtained by using a composite
distribution based on Weibull assumption. Number of disks in each system is
300 and the total rate of each MDS code is 1/2.

Fig. 6. Component hazard rate function using multidimensional MDS codes
and structures. λ(x) is assumed to be a simple bathtub curve obtained by using
a composite distribution based on Weibull models. Number of disks in each
system is 3000 and the total rate of each MDS code is 0.4.

3000 disks. Fig. 6 shows the data component disk hazard rates
for 1-D, 2-D and 3-D disk array structures of the same size.
Component MDS codes for 2-D structure have the parameters
(60, 30, 31) and (50, 40, 11) whereas for 3-D structure, they
have the parameters (25,15,11), (12, 10, 3), and (10, 8, 3).
As can be observed, although the array hazard rates show
better performance with multi-dimensional MDS structures, the
component hazard rates are worse compared to that of 1-D
disk array. This is mainly due to 1-D MDS-protected system
performs better (in fact it comes close to the performance lower
bound) than multiple short block length MDS codes of the same
rate. However, the performance gain of multidimensional disk
structures is rather in terms of low complexity due to using short
block length and high rate MDS codes. In addition, if the array
of disks fail for 1-D structure, the whole system fails and data is
lost. On the other hand, multidimensional structures have many
arrays of shorter length and it is low probability to lose all of
them at once. It is not hard to see that data component disk
hazard rates of multidimensional structures (2-D and 3-D arrays
in our case) are close to that of 1-D array, particularly for useful
and wear-out time periods. This means that the lower bounds
can be achieved using multidimensional structures for a large
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fraction of time of a drive’s lifespan. Finally, we note that our
arguments are based on a conventional decoding algorithm used
for product codes, more advanced algorithms might improve
the over all decoding performance.

V. CONCLUSION

Generalized expressions are given for disk arrays that are
protected by MDS-parities. A brief analysis of the interaction
is also presented between redundancy and aging of MDS-parity
based disk array systems in a distributed storage scenario. The
relationship between redundancy level and aging is demon-
strated using general formulations and accurate distributions
that is more reflective of the real life failure scenarios. Asymp-
totic results show that performance lower bounds are achievable
with large-scale storage networks as long as independence is as-
sumed among the component failures. Although neat compact
form expressions may not exist for some of the derivations,
numerical results provide some intuition about the behavior
of such disk arrays under independent failure modes. Results
are extended to include multidimensional disk arrays to show
that there might be practical ways to get close to predicted
performance lower bounds for the component hazard rates.
We have not specified any particular code to keep the derived
expressions more general. One property of these codes was
their optimality, characterized by the MDS feature. However,
other near-MDS codes and many variations of such can be used
in storage systems due to implementation and the expressions
derived in this paper shall still be applicable. Discussions
regarding a particular code choice without the MDS property
and the associated reliability expressions are beyond the scope
of this paper.

APPENDIX A
PROOF OF THEOREM 1

Let us begin this section with the following lemma.
Lemma 7: The function ψt(z, n, λ(x)) satisfies the follow-

ing relationship for any integer z, satisfying 0 ≤ z ≤ n

ψt (z, n, λ(x))

ψt−z (n− z, λ(x))
=

(
n

z

)
(1 −R(x))z (25)

where ψt(n, λ(x))
Δ
= ψt(0, n, λ(x)) is the cumulative distribu-

tion function of the binomial distribution.
Proof: First note that for z > i, we have the convention(

i
z

)
= 0. Therefore we rewrite the expression forψt(z, n, λ(x)),

=

t∑
i=z

(
n

i

)(
i

z

)
(1 −R(x))i R(x)n−i (26)

=

t∑
i=z

(
n− z

i− z

)(
n

z

)
(1 −R(x))i R(x)n−i (27)

=

(
n

z

)
(1−R(x))z

t∑
i=z

(
n− z

i−z

)
(1 −R(x))i−z R(x)n−i (28)

=

(
n

z

)
(1−R(x))z

t−z∑
j=0

(
n−z

j

)
(1 −R(x))j R(x)n−z−j (29)

=

(
n

z

)
(1 −R(x))z ψt−z (n− z, λ(x)) (30)

from which the result follows. Note that we make the change of
variables j = i− z in (29) and the (27) follows from binomial
coefficient identity

(
n
i

)(
i
z

)
=

(
n−z
i−z

)(
n
z

)
. �

After establishing a useful lemma, let us give the proof of
Theorem 1. It is clear that a horizontal block failure will occur
only if t+ 1 or more drives fail in the horizontal block of size n
disks.2 Due to independence assumption, the reliability of such
a block is given by

S(x)=

t∑
i=0

(
n

i

)
(1−R(x))i R(x)(n−i)=ψt (n, λ(x)) . (31)

Let us find the probability density function of the time
between component failures. This is given by

fX(x) = − S ′(x) = −dS(x)

dx
(32)

=
t∑

i=0

(
n

i

){
iR′(x)

1 −R(x)
(1 −R(x))i R(x)(n−i)

− (n− i)R′(x)

R(x)
(1 −R(x))i

×R(x)(n−i)

}
(33)

= − n
R′(x)

R(x)
ψt (n, λ(x)) (34)

+
R′(x)

R(x)

1
1 −R(x)

ψt (1, n, λ(x))

=λ(x)nψt (n, λ(x))−
λ(x)ψt (1, n, λ(x))

1 −R(x)
(35)

where we used the fact that R′(x)/R(x) = −λ(x). Thus, fi-
nally from (3), we compute the total hazard rate for all k data
components (a series of k data storage units) as follows,3

kμc(x, n, r) =
fX(x)

S(x)
=

fX(x)

ψt (n, λ(x))

=λ(x)

(
n−ψt (1, n, λ(x))/ψt (n, λ(x))

1−R(x)

)
. (36)

If we use the result of Lemma 7 with z = 1, i.e.,

ψt (1, n, λ(x)) = n (1 −R(x))ψt−1 (n− 1, λ(x)) (37)

and (36) then we arrive at (5).
As for the lower bound, we observe the following relation-

ship due to t ≥ i,

tψt (0, n, λ(x)) ≥ ψt (1, n, λ(x)) . (38)

2Since the controller of disk array systems can identify which disks are
failed, MDS codes are used to correct erasures.

3We note that the horizontal system failure rate is always equal to the sum of
the component failure rates, regardless of the distributions used to describe the
components. In other words, let λH(x) be the failure rate of a horizontal system
that consists of N components. If the component failure rates are characterized
by the set of hazard rates {λi(x)}Ni=1, it is not hard to show that λH(x) =∑N

i=1
λi(x). This result is used implicitly throughout the paper to find the per

component hazard rates of multidimensional coded storage systems.
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Using above equation and (37), we can proceed as follows,

μc(x, n, r) ≥
λ(x)

r

(
1 − t

n (1 −R(x))

)
(39)

=
λ(x)

r

(
r −R(x)

1 −R(x)

)
(40)

from which the lower bound follows. Notice that if R(x) > r,
then this lower bound takes on negative values. Therefore, the
maximum operator is introduced to make the lower bound non-
negative. �

APPENDIX B
PROOF OF THEOREM 4

Let R(a) = 1/q for some a > 0, q > 1, we have

ψt−1 (n− 1, λ(a)) =
t−1∑
i=0

(
n− 1
i

)(
1 − 1

q

)i (1
q

)n−1−i

= q−n+1
t−1∑
i=0

(
n− 1
i

)(
q − 1
q

)i (1
q

)−i

= q−n+1
t−1∑
i=0

(
n− 1
i

)
(q − 1)i (41)

and similarly,

ψt (n, λ(a)) = q−n
t∑

i=0

(
n

i

)
(q − 1)i. (42)

Using an asymptotic result from coding theory that in a
q-ary n dimensional linear space F

n
q , the volume of Hamming

spheres (balls) of radius t can be bounded for large n and
t/n = 1 − r ≤ 1 − 1/q i.e., r ≥ 1/q by

q(hq(1−r)−o(1))n ≤
t∑

i=0

(
n

i

)
(q − 1)i ≤ qhq(1−r)n (43)

where hq(p) is the q-ary entropy function given by

hq(p)
Δ
= p logq(q−1)+p logq

(
1
p

)
+(1−p) logq

(
1

1−p

)
(44)

and o(1) → 0 as n → ∞. In the context of coding theory,
q is usually an integer representing the size of the alphabet over
which the code is defined. Here in our case, it is not to hard to
show that (43) is valid for any value of q ∈ R as long as qr ≥ 1.
Finally, we observe that

qhq(1− rn
n−1 )(n−1)−o(n)−hq(1−r)n+1

≤ ψt−1 (n− 1, λ(a))
ψt (n, λ(a))

≤ qhq(1− rn
n−1 )(n−1)−hq(1−r)n+o(n)+1 (45)

and ∃ε > 0 such that the following assures the convergence for
large n,

Pr

{∣∣∣∣ψt−1 (n− 1, λ(a))
ψt (n, λ(a))

−q(n−1)hq(1− rn
n−1 )−nhq(1−r)+1

∣∣∣∣ > ε

}
= 0. (46)

Let us use the definition for hq(p) to expand our expression
along with the asymptotical results that limn→∞ logq(1−rn/
n− 1) = logq(1 − r) and limn→∞ logq(rn/n− 1) = logq(r)

logq

(
qhq(1− rn

n−1 )(n−1)−hq(1−r)n+1
)

= (n− 1)hq

(
1 − rn

n− 1

)
− nhq(1 − r) + 1 (47)

where

(n− 1)hq

(
1 − rn

n− 1

)

= (n− 1)

[(
1 − rn

n− 1

)
logq(q − 1)

−
(

1 − rn

n− 1

)
logq(1 − r)

−
(

rn

n− 1

)
logq(r)

]
(48)

= (n− 1 − rn) logq(q − 1)− (n− 1 − rn) logq(1 − r)

− rn logq(r) (49)

and similarly,

nhq(1 − r) = (n− rn) logq(q − 1)

−(n− rn) logq(1 − r)− rn logq(r). (50)

Finally, let us use (49) and (50) to obtain,

(n− 1)hq

(
1 − rn

n− 1

)
− nhq(1 − r) + 1

= 1 − logq(q − 1) + logq(1 − r) (51)

= logq

(
q(1 − r)

q − 1

)
. (52)

This result justifies that, for large enough n, we have the
following convergence

q(n−1)hq(1− rn
n−1 )−nhq(1−r)+1 → q(1 − r)

q − 1
(53)

which completes the proof for r ≥ 1/q. For r ≤ 1/q, we have

q(1 − r)

q − 1
≥ 1. (54)

On the other hand, It is easy to see that for t ≤ n− 1

t∑
i=0

(
n− 1
i

)
(q − 1)i+1

≥
t−1∑
i=0

(
n− 1
i

)
(q − 1)i+1 (55)

=
t∑

i=0

(
n− 1
i− 1

)
(q − 1)i (56)

=
t∑

i=0

[(
n

i

)
−
(
n− 1
i

)]
(q − 1)i (57)
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from which we obtain,

q
t∑

i=0

(
n− 1
i

)
(q − 1)i ≥

t∑
i=0

(
n

i

)
(q − 1)i. (58)

Using a similar argument, we can show that

ψt−1 (n−1, λ(a))
ψt (n, λ(a))

=
q

q−1

(
1−

∑t
i=0

(
n−1
i

)
(q−1)i∑t

i=0

(
n
i

)
(q−1)i

)
(59)

and using (58), we obtain

ψt−1 (n− 1, λ(a))
ψt (n, λ(a))

≤ 1. (60)

Combining (54) and (60), we have ψt−1(n− 1, λ(a))/ψt(n,
λ(a)) = 1 for n → ∞. Finally, this implies μc(a, n, r) → 0 as
n → ∞ if r ≤ 1/q. �

APPENDIX C
PROOF OF THEOREM 5

Before proving Theorem 5, let us first prove the following
useful lemmas.

Lemma 8: The ratio of an incomplete Gamma function to a
complete Gamma function satisfies the following relationship,

1 − b

a− b− 1
<

Γ(a, b)

Γ(a)
=

Γ(a, b)

(a− 1)!
< 1 (61)

where Γ(a, b) =
∫∞
b ta−1e−tdt is the incomplete Gamma

function.
Proof: Let us explore the difference,

Γ(a)− Γ(a, b) =

b∫
0

ta−1e−tdt <

b∫
0

ba−1e−bdt (62)

= bae−b

=
b

a− b− 1

a−1∫
b

ba−1e−bdt

<
b

a− b− 1

a−1∫
b

ta−1e−tdt (63)

<
b

a− b− 1

∞∫
0

ta−1e−tdt (64)

=
b

a− b− 1
Γ(a) (65)

which establishes the lower bound. The upper bound follows
from the definition of incomplete beta function. Note that
the integrand ta−1e−t achieves its maximum at t = a− 1 and
for 0 < t < a− 1, it is increasing. Thus, for 0 < t < b, we
have the inequality (62) and for b < t < a− 1 we have the
inequality (63). �

Lemma 8 indicates that for a fixed b > 0 and a → ∞,
Γ(a, b) → Γ(a). In addition, for a fixed b > 0 and a 
 b, we
have the following approximation

Γ(a, b)

Γ(a)
≈ a− 2b− 1

a− b− 1
. (66)

Lemma 9: As n → ∞ and R(x) → 0 while satisfying
limn→∞

x→∞
nR(x) < ∞, we have the following convergence

ψt (n, λ(x)) −→ 1 − Γ (k, nR(x))

Γ(k)
≈ nR(x)

k − nR(x)− 1
(67)

and as n → ∞ and x → 0 while satisfying limn→∞
x→0

n(1 −
R(x)) < ∞, we have the following convergence

ψt (n, λ(x))−→
Γ (t+1, n (1−R(x)))

Γ(t+1)
≈ 2R(x)−r−1

R(x)−r
(68)

where R(x) = e
−
∫ x

0
λ(y)dy.

Proof: First note the following relationship,

ψt (n, λ(x)) =

t∑
i=0

(
n

i

)
(1 −R(x))i R(x)n−i

=

n∑
j=n−t

(
n

j

)
R(x)j (1 −R(x))n−j

= 1 −
n−t−1∑
j=0

(
n

j

)
R(x)j (1 −R(x))n−j . (69)

If limn→∞
x→∞

nR(x) < ∞, then the asymptotical convergence
of binomial distribution to Poisson distribution yields(

n

j

)
R(x)j (1 −R(x))n−j → njR(x)je−nR(x)

j!
. (70)

Thus, for sufficiently large n, we have

ψt (n, λ(x)) = 1 −
n−t−1∑
j=0

njR(x)je−nR(x)

j!
(71)

= 1 − Γ (n− t, nR(x))

(n− t− 1)!
(72)

= 1 − Γ (k, nR(x))

Γ(k)
(73)

and using the approximation (66) with a = k and b = nR(x),
the (67) follows. Note that if n → ∞, then k = nr → ∞.
Similarly, using (69) and following the same line of proof, we
can obtain (68) �

Next, we give the proof of Theorem 5. First, consider n → ∞
and R(x) → 0 while satisfying limn→∞

x→∞
nR(x) < ∞. Using

the results of Lemma 8 and Lemma 9, we can approximate the
limiting ratio,

1 − ψt−1 (n− 1, λ(x))
ψt (n, λ(x))

→ 1 − (n− 1)R(x)

nR(x)

× nr − nR(x)− 1
nr − (n− 1)R(x)− 1

=
nr − 1

n (nr − (n− 1)R(x)− 1)
(74)

≈ 1
n
. (75)
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Therefore, we have kμc(x, n, r) → kλ(x)/nr = λ(x) which
establishes what is asserted.

Similarly, let us consider n → ∞ and x → 0 while satisfying
limn→∞

x→0
n(1 −R(x)) < ∞. Let b = (n− 1)(1 −R(x)) and

use lemma 8, Lemma 9 and the approximation (66). Employing
some algebraic manipulations, we can obtain

n

(
1 − ψt−1 (n− 1, λ(x))

ψt (n, λ(x))

)

≈ n

⎛
⎝1 − 1 − b/(t− b− 1)

1 − b+1−R(x)
t−b+R(x)−1

⎞
⎠ (76)

=
R(x)(t− 1)− t+ b+ 1

(t− b− 1) (t− 2b+ 2R(x)− 2)
. (77)

Let us divide both the numerator and denominator by n2. Let-
ting n→∞, we can approximate the limiting ratio as follows

n

(
1 − ψt−1 (n− 1, λ(x))

ψt (n, λ(x))

)
→ r (1 −R(x))

(R(x)− r) (2R(x)− r − 1) .

Therefore using Theorem 1, we have

kμc(x, n, r) =nλ(x)

(
1 − ψt−1 (n− 1, λ(x))

ψt (n, λ(x))

)
(78)

→ λ(x)r (1 −R(x))

(R(x)− r) (2R(x)− r − 1)
(79)

which completes the proof. �
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