Runlength-Limited Sequences

KEES A. SCHOUHAMER IMMINK, FELLOW, IEEE

Coding techniques are used in communication systems to
increase the efficiency of the channel. Not only is coding equip-
ment being used in point-to-point communication channels, but
coding methods are also used in digital recording devices such as
sophisticated computer disk files and numerous domestic elec-
tronics such as stationary- and rotary-head digital audio tape
recorders, the Compact Disc, and floppy disk drives. Since the early
1970s, coding methods based on runlength-limited sequences have
played a key role for increasing the storage capacity of magnetic
and optical disks or tapes. A detailed description is furnished of
the limiting properties of runlength-limited sequences, and a com-
prehensive review is given of the practical aspects involved in the
translation of arbitrary data into runlength-limited sequences.

. INTRODUCTION

Given the more or less constant demand for increased
storage capacity and reduced access time, it is not sur-
prising that interest in coding techniques for optical and
magnetic recorders has continued unabated ever since the
day when the first mechanical computer memories were
introduced. Naturally, technological advances, notably of
a mechanical nature, have greatly increased the storage
capacity, but state-of-the-art storage densities are also a
function of improvements in channel coding.

Coding techniques are used in communication systems
to improve the reliability and efficiency of the communi-
cation channel, The reliability is commonly expressed in
terms of the probability of receiving the wrong information,
that is, information that differs from what was originally
transmitted. Error control is concerned with techniques of
delivering information from a source (the sender) to a des-
tination (the receiver) with a minimum of errors. As such
it has its roots in information theory and goes back to the
pioneering work of Shannon. Information theory partitions
the coding problem into two main categories: source and
channel coding. Source coding is, roughly speaking, a tech-
nique to reduce the source symbol rate by removing the
redundancy in the source signal. A convenient definition
of channel coding is: The technique of realizing high trans-
mission reliability despite shortcomings of the channel,
while making efficient use of the channel capacity. In
essence, the tenets of information theory show that a sta-
tionary channel can be made arbitrarily reliable given that

Manuscript received November 3, 1989; revised July 19, 1990.

The author is with Philips Research Laboratories, 5600 JA Eind-
hoven, The Netherlands.

IEEE Log Number 9039185.

afixed fraction of the channel is used for redundancy. This
raises the immediate question: How can the promised the-
oretical performance be attained in practice? There is no
answer to that question at this moment; there is, however,
a de facto consensus as to which code structure is “‘good.”
In recorder systems, channel coding is commonly accom-
plished in two successive steps: a) error-correction code
and b) recording code. The various coding steps are vis-
ualized in Fig. 1 which shows a block diagram of a possible
recording system of this kind.

Error-correction control is realized by systematically add-
ing extra symbols to the conveyed message. These extra
symbols make it possible for the receiver to detect and/or
correct some of the errors that may occur in the received
message. The main problem is to achieve the required pro-
tection against the inevitable transmission errors without
paying too high a price in adding extra symbols. There are
many different families of error-correcting codes. Of major
importance for recording applicationsis the family of Reed-
Solomon codes. The reason for their preeminence in
recording systems is that they can combat combinations of
random as well as burst errors.

The arrangement termed recording code (sometimes
referred to as line or modulation code) on which this paper
will concentrate, accepts the bit stream (extra bits added
by the error-correction system included) as its input and
converts the stream to a waveform suitable for the specific
recorder requirements. The object of the recording code
is to bring structure into a data stream that is generally not
present in the information supplied by the user. All the
aforementioned coding stages are present in amodern dig-
ital video recorder [1].

Schematically the elements of the coding steps in adigital
recorder as shown in Fig. 1 are similar to those of a ““point-
to-point’”’ communication link. For example, in a radio or
satellite link the encoded information is used to modulate
a carrier. In this context, the method of putting a second
code on top of the first one, as seen in the structure of Fig.
1, is usually called a concatenated scheme.

The physical constraints dictated by the channel lead to
the simple fact that some sequences have to be discarded,
and therefore not the entire population of sequences can
be used. For instance, common magnetic recorders will not
respond to low-frequency signals, so that in order to min-
imize distortion of the retrieved data, one usually elimi-
nates low-frequency components in the recorded data by

0018-9219/90/1100-1745$01.00 © 1990 IEEE

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

1745

. Error
Recording Correction User

Code Gode Data

-

Error .
User " Recording
Correction [—{
Data Code Code
Encoders

Decoders

Fig. 1. Block diagram of a recording system. A data source generates user data in the form
of (binary) symbols. The source data is translated in two successive steps: a) error-cor-
rection code and b) recording code. The output generated by the recording code is stored
on the storage medium in the form of binary physical quantities, for example, pits and
lands, or positive and negative magnetizations. During read-out, the source data are
obtained via the decoder for the recording code and the error-correction code.

a coding step. The likelihood of errors is reduced by avoid-
ing those sequences which are a priori known to be most
vulnerable to channel impairment, and thus prone to error.
The actual process of selecting and devising a recording
code is in fact always a compromise between conflicting
requirements. The choice of a particular code depends on
numerous factors such as available signal-to-noise ratio,
clocking accuracy, non-linearities, and intersymbol inter-
ference (time varying!). A recording code must show a cer-
tain robustness against dynamic changes of the channel’s
characteristics. This statement applies specifically for the
DAT and Compact Disc, which are meant for domestic use,
and where, thus readjustment of the mechanical param-
eters is out of the question. Other constraints, such as
equipmentlimitations, ease of encoding and decoding, and
the desire to preserve a particular mapping between the
source and the code symbols all govern to a greater extent
the encoding chosen. Nontechnical considerations such as
the patent situation or familiarity (prejudice?) may also
influence the choice and are to some extent certainly valid.
One further, and certainly not the least, factor that affects
the choice of coding scheme is its cost: any coding scheme
is merely a part of a larger system and its cost must be in
proportion to its importance within that system.

An encoder has the task of translating arbitrary user infor-
mation plus error-correction symbols into a sequence which
conforms to the given channel constraints. On the average
m binary user symbols are translated into n binary channel
symbols. Obviously, since a restricted repertoire is used,
n > m. A measure of the efficiency implied by a particular
code is given by the quotient R = m/n, where R is called
the rate of the code. The encoder translates user infor-
mation into the channel representation using a kind of dic-
tionary or look-up table. The problems involved are not triv-
ial. The straightforward implementation would require
look-up tables of unacceptably large size when the code-
words are comparatively long. This difficulty is circum-
vented by developing algorithmic procedures that allow
the encoder to compute a codeword from the user infor-
mation. In turn, the decoder processes the retrieved wave-
forms and also performs the inverse mapping, using a sim-
ilar algorithmic routine, to the digital output sequence.
Theoretical and practical contributions are still being made
to the subject, which is indicative of its hidden complex-
ities.

Recording codes that are based on runlength-limited (RLL)
sequences have found almost universal application in opti-
cal and magnetic disk recording practice. The length of time,
usually expressed in the number of binary symbols,
between consecutive transitions is known as the runlength.
Runlength-limited sequences are characterized by two
parameters, (d + 1) and (k + 1), which stipulate the mini-

1746

mum and maximum runlength, respectively, that may occur
in the sequence. The parameter d controls the highest tran-
sition frequency, and has a bearing on the intersymbol
interference when the sequence is conveyed over a band-
width-limited channel. If the transitions are too close, the
intersymbol interference between adjacent symbols may
become excessive. In RLL sequences, the occurrence of
such destructive patterns is avoided. Timing is commonly
recovered with a phase-locked loop which adjusts the phase
of the detection instant according to observed transitions
of the received waveform. The maximum runlength param-
eter k ensures adequate frequency of transitions for syn-
chronization of the read clock. The grounds on which d and
kvalues are chosen, in turn, depend on various factors such
as the channel response, the desired information density,
and the jitter and noise characteristics. Archetypal RLL
codes are the rate 1/2, (d = 2, k = 7) code which is applied
in the IBM3380 rigid disk drive [2], [3], and the Eight-to-Four-
teen Modulation (EFM), a rate 8/17, (d = 2, k = 10) code,
which is the basis of the Compact Disc [4]. Runlength-lim-
ited codes, in their general form, were pioneered in the
1960s by Freiman and Wyner [5], Kautz [6], Gabor [7], Tang
and Bahl (8], and notably Franaszek [9]. It is undoubtedly
the casethat RLL codes have generated a high and sustained
level of interest amongst workers ever since the introduc-
tion of the basic ideas, and there is now a considerable
amount of literature available on the design of encoding
and decoding devices of RLL sequences.

The outline of this paper is as follows. We commence with
a formal definition of RLL sequences, followed by an anal-
ysis of the runlength distribution and spectral properties
ofideal RLL sequences. Inthe remaining sections, examples
of code implementation are presented to illustrate the vari-
ety of possible design tools.

Il. DEFINITION OF RUNLENGTH-LIMITED SEQUENCES

The theory on RLL sequences is best explained by intro-
ducing another constrained sequence, which is closely
related to an RLL sequence.

Definition: A dk-limited (binary) sequence, in short, (dk)
sequence, satisfies simultaneously the following two con-
ditions:

1. d constraint—two logical “ones” are separated by

a run of consecutive ‘“zeros’ of length at least d.

2. k constraint—any run of consecutive ‘“zeros’ is of
length at most k.

If only condition 1 s satisfied, the sequence is said to be

d-limited (with k = o), and will be termed (d) sequence.

In general, a (dk) sequence is not employed in optical or
magnetic recording without a simple precoding step. A (dk)

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

A

sequence is converted to an RLL channel sequence in the
following way. Let the channel signals be represented by
asequence {y;},y;e {—1,1}. The channel signals represent
the positive or negative magnetization of the recording
medium, or pits or lands when dealing with optical record-
ing. The logical ‘ones’ in the (dk) sequence indicate the
positions of a transition 1 = —1 or —1 — 1 of the corre-
sponding RLL sequence. The (dk) sequence

0100010010001101 -~
would be converted to the RLL channel sequence
1T-1-1-1-1111-1-1-1-11-1-11"--

The mapping of the waveform by the precoding step is
known as the non-return-to-zero-inverse (NRZI) data
encoding method. Waveforms that are transmitted without
such an intermediate coding step are referred to as non-
return-to-zero (NRZ). The nebulous terms NRZ and NRZI|
stem from telegraphy, and have no meaning in relation to
recording channels. Coding techniques using the NRZI for-
mat are generally accepted in digital optical and magnetic
recording practice. It can readily be verified that the min-
imum and maximum distance between consecutive tran-
sitions of the RLL sequence derived from a (dk) sequence
isd + 1and k + 1 symbols, respectively, or in other words,
the RLL sequence has the virtue that at least d + 1 and at
most k + 1 consecutive like symbols occur.

lI. NumBser OF (dk) SEQUENCES

In this section, we address the problem of counting the
number of sequences of a certain length which comply with
given d and k constraints.

Let N4(n) denote the number of distinct (d) sequences of
length n. Define

Ngmy =0, n<0,
Ny(0) = 1. (1)

The number of (d) sequences of length n > 0is found with
the recursive relations [8]

Nyim=n+1 1=n=d+1,

Ngn) = Ngin = 1) + Ny(n —d = 1), n>d+ 1 (2

Table 1 lists the number of distinct (d) sequences as a func-
tion of the sequence length n with the minimum runlength
d as a parameter. Recursion relation (2) has an elementary
interpretation. Let (x4, X, - - - , X,_4) be a (d) sequence of
length n — 1 > d, then (x5, x5, * *+, x,_1, 0) and (x;, Xxo,
s+, Xa_g-1, 09 1) are also (d) sequences, where 09 stands
for a string of d consecutive “zeros.” As an immediate con-
sequence of this observation, we conclude that the number
of distinct (d) sequences of length n is Ng(n — 1) + Ny(n —
d—- 1.

Table 1
and the Minimum Runlength d as a parameter

When d = 0, we simply find that Ny(n) = 2Ny(n — 1), or
in other words, when there is no restriction at all, the num-
ber of combinations doubles when a bit is added, which is,
of course, a well-known result.

The numbers N,(n) are 1,2, 3, 5,8, 13, - - - , where each
number is the sum of its two predecessors. These numbers
are called Fibonacci numbers, after the Italian mathema-
tician who discovered that the number of rabbits multiplies
in Fibonacci rhythm [10]. The ratio of two successive Fibon-
acci numbers Ny(n + 1)/Ny(n) approaches for large n the

_golden ratio g = (1 + v/5)/2. Similarly, the numbers Ny(n),
d > 1, are called generalized Fibonacci numbers.

The number of (dk) sequences of length n can be found
in a similar fashion. Let N(n) denote the number of (dk)
sequences of length n. (For the sake of simplicity in notation
no subscript is used in this case). Define

Nin) =0, n<Q,

N@©) = 1. 3)
The number of (dk) sequences of length n is given by [8]
N@n)=n +1,

N =Nn—1+Nn—-d-1,
k
N(n)=d+k+1—n+_§ldN(n—i—1),

1<sn=<d+1,
d+1=<n=<k,

k<n=<d+k,
k
N(n)=§}dN(n—i—1), n>d+k @

The k-limited case, d = 0, can be derived as a special case
of the general dk case. It should be appreciated that the d,
k, and dk sequences defined above cannot in general be
cascaded without the risk of violating the specified con-
straints at the boundaries. In a later section, we will describe
methods of inserting buffering (merging) sequences that
allow the concatenation of codewords without violating the
dk constraints

IV. ASYMPTOTIC INFORMATION RATE

An encoder translates arbitrary user (or source) infor-
mation into, in this particular case, a sequence that satisfies
given d and k constraints. On the average, m source sym-
bols are translated into n channel symbols. What is the max-
imum value of R = m/n that can be attained for some spec-
ified values of the minimum and maximum runlength d and
k?The answerwas provided by Shannon[11]. The maximum
value of R that can be achieved is termed the capacity. The
capacity, denoted by C(d, k), is governed by the specified
constraints and is given by

C(d, k) = lim

n—-o

1
- log, N(n). &)

Number of Distinct (d) Sequences as a Function of the Sequence Length n

5 6 7 8
3 21 34 55
9 13 19 28
7
6
6

o

VTh WN =

n
d 1
10 14 19
8 11 15
7 9 12

VTV UT Oy & S

9 10 1 12 13 14
89 144 233 377 610 987
41 60 88 129 189 277
26 36 50 69 95 131
20 26 34 45 60 80
16 21 27 34 43 55

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

1747

For notational convenience we restrict ourselves for the
time being to (d) sequences. Equation (5) requires an explicit
formula of the number of sequences N(n) as a function of
the sequence length n. The desired expression is most eas-
ily obtained by solving the homogeneous difference equa-
tion (2). According to (2), the number of (d) sequences is

Ngn) = Nyn = D + Nyn—d = 1), n>d + 1.
Writing Ny(n) = z", we obtain the characteristic equation
29" —z9-1=0.)]

Any z that satisfies the characteristic equation will solve the
difference equation. The general solution for Ny(n) is then
a linear combination:

d+1
Nyin) = ‘_2‘1 a;\?

where \;, i =1, ---,d + 1, are the roots of (6), and a, are
constants, independent of n, to be chosen to meet the first
(d + 1) values of Ny(n). If X = max; {\;} is the largest real
root of (6), then for large n,

Nd(n) o A\,
Applying definition (5), the asymptotic information rate of
d-constrained sequences, denoted by C(d,), is

1
C(d, ») = lim o log, Ng(n) = log, \.)

This is the sought-after result we need: the quantity C(d, «)
provides the maximum rate possible of any implemented
code given the channel constraints.

Example (1): Let d = 1, then we obtain the characteristic
equation

z2Z2—z~-1=0,
with solutions
A\ =11+ 5 and A, =101 - V5).

After some rearrangement we obtain, quite surprisingly, an
explicit formula, discovered by A. de Moivre in 1718 and
proved some years later by Nicolas Bernoulli:

N()_L<1+‘/§>n+2_L<1_\/§>n+2
W=7H\ 2 NAE

1
= E {gn+2 _ (_g)—n—Z}/ n=0. (8)

Thus X equals the golden ratio A = g = (1 + v/5)/2, and the
capacity is
NG

1+
C(1, ») = log, 7 = 0.694.

O

Table 2 collects further values of the capacity for different
values of d.

The quantity DR, called density ratio, is sometimes
referred to as packing density. It expresses the minimum
physical distance between consecutive transitions of an RLL
sequence given the information rate is fixed. It is defined
as

DR = (1 + d)R, 9)

1748

Table 2 Capacity and Density Ratio DR versus Minimum
Runiength d

d C(d,) (d + NC(d, x)
1 0.694 1.388
2 0.551 1.654
3 0.465 1.860
4 0.406 2.028

where Ris the rate of the RLL code. It can be seen from Table
2 that an increase of the density ratio is obtained at the
expense of decreased capacity. It may be shown that the
density ratio DR is made arbitrarily large by choosing the
minimum runlength d sufficiently large. This follows from

DR = (d + 1) log, \.
The root \ of (6) satisfies

d 11d
(-ad) _\(0+ad
log, d log, d

for large d. Thus DR grows like a constant times log d, see
also Table 2. Codes with a larger value of d, and thus a lower
rate, are penalized by an increasingly difficult trade-off
between the detection window (the size of a channel bit)
and the density ratio in applications with very high infor-
mation density and data rates.

In similar vein to the case of d-constrained sequences,
it is possible to derive the capacity C(d, k), k finite. The
capacity C(d, k) is the base-2 logarithm of the largest real
root of the characteristic equation of (dk) sequences [8]

Zk+2 — Zk+1 _ Zk~d+1 +1=0. (10)

Table 3 lists the capacity C(d, k) versus the runlength param-
eters d and k.

A. State-Transition Matrix Description

There is an alternative technique to derive the channel
capacity, which is based on the representation of the dk
constraints by a finite-state sequential machine. Fig. 2(a)
illustrates a possible state-transition diagram. There are (k
+ 1) states which are denoted by {0y, - * - , o4, 1}. Trans-
mission of a ‘“zero’’ takes the sequence from state o; to state
gj+1. A “one” may be transmitted only when the machine
occupies states g, 4, - * *, 0k 1. Any path through the state-
transition diagram defines an allowed (dk) sequence. The
adjacency or connection matrix, which gives the number
of ways (paths) of going (in one step) from state o; to state
g;, is given by the (k + 1) X (k + 1) array D with entries d;;,
where

dy =1, izd+1,
d,'l' = 1, I = l + 1,
d; =0, otherwise. (11)

For example, the connection matrix for (d, k) = (1, 3) is

(12)

-
o o ©
(=]

Y

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

Table 3 Capacity C(d, k) versus Runlength Parameters d and k

k d=0 d= d=2
879 .4057
3 9468 5515 2878
4 .9752 6174 .4057
5 .9881 6509 .4650
6 9942 .6690 4979
7 9971 6793 5174
8 9986 6853 .5293
9 .9993 .6888 .5369
10 9996 6909 .5418
" 19998 6922 .5450
12 9999 .6930 5471
13 9999 6935 .5485
14 9999 .6938 .5495
15 .9999 6939 .5501
© 1.000 .6942 5515

d=3 d=4 d=5 d=6
2232

3218 1823

3746 2669 1542

4057 3142 2281 1335
4251 3432 2709 1993
4376 3620 2979 2382
4460 3746 3158 2633
4516 3833 3282 2804
4555 3894 3369 2924
4583 3937 3432 3011
4602 3968 3478 3074
4615 3991 3513 3122
4650 4057 3620 3282

0
(a)
1
(b)

Fig. 2. (a) State-transition diagram for a (dk) sequence.
Transmission of a ““zero’’ takes the sequence from the state
o;tostateo; .4, i < k. A’’one’’ may be transmitted only when
the machine occupies states 64,4, - * * , 0k 1, While a “one”
must be produced if the machine is in state gy, The
machine returns to state o, after transition of a “‘one.” (b)
State-transition diagram for a (d) sequence. Only in state
0441 both a’’zero” and a ““one’” may be emitted, in all other
states a ‘‘zero” must be emitted. .

A d-constrained channel can be modeled with d + 1 states
(see Fig. 2(b)). The connection matrix is given by the (d +
1) X (d + 1) array D with entries d;;, where

di=1, j=i+1,
dys1,1 = dgr1g+1 =1,
d; =0, otherwise. (13)

The above representation is an example of the input-
restricted noiseless channel studied by Shannon [11]. The
finite-state machine model allows us to compute the capac-
ity, and it is also very helpful to compute the number of
sequences that start and end in certain states. The number
of distinct sequences of length n that emanate from state
o; and terminate in state g; is given by the jjth entry of D".
The matrix D' of the (d, k) = (1, 3) constrained channel is

77 11 8 5
24 17 11 8

D" = (14)
19 13 9 6
1M1 8 5 4

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

It can be seen, for instance, that there are exactly 19
sequences of length 10 that emanate from state ¢; and ter-
minate in state o;.

An alternative way to express the capacity of a finite-state
machine that emits dk-constrained sequences is

cd, k) = lim %Iog2 s o, (15)
n—oo L1

where [D]} denotes the ijth entry of D". Shannon [11]
showed that

C(d, k) = log; \, (16)
where \is the largest real root of the characteristic equation
det[D — zI1 =0, 17)

where [is the identity matrix.

V. SpecTRUM OF IDEAL RLL SEQUENCES

The power density function, or in short, spectrum, of an
RLL sequences offers a measure of the bandwidth occu-
pation, and it provides a means of assessing the interfer-
ence induced from signals from adjacent tracks. To com-
pute the spectrum of RLL sequences generated by
implemented codes can be a difficult task. It is, however,
possible to find the spectrum if some simplifying assump-
tions regarding the runlength distribution are made. To this
end, consider a source that emits a sequence of binary sym-
bols whose runlengths ;e {d + 1, - - - , k + 1} are i.i.d.
variables. Let the probability of occurrence of runlength T;
be denoted by Pr(T), then the power spectral density func-
tion can be expressed by [12]:

1 1 - |G

H@) = FnT w2 11+ Glw)?’ (18)
where
k+1
G = § . Pr(Tye™, j = -1, 19
=d+
and
_ k+1
T= 2 IPKT). 20)
I1=d+1

Using information theoretical arguments, it can be shown
that an ideal RLL sequence, that is, a sequence with max-
imum information content, has a truncated geometric run-

1749

length distribution with parameter A [13], [14], [15]. Then
P(Ty=XT, Ti=d+1,--,k+1, @1

where X\ is the largest real root of (10). Substitution of the
distribution (21) provides a straightforward method of
determining the spectrum of ideal RLL sequences. Fig. 3
depicts the spectra H(w) of some ideal (d) sequences for

H (0) (dB)

I
rx en
5

Fig. 3. Power density function versus frequency of ideal
runlength-limited sequences.

various values of the minimum runlength d. The frequency
scale and the pulse lengths of the RLL sequences are nor-
malized in such a way that the information rate of all
sequences is fixed at 1 bit/s.

We may observe the following characteristics: maxima
occur at nonzero frequency and the spectra exhibit a more
pronounced peak with increasing d. The energy in the low-
frequency range diminishes with decreasing minimum run-
length d.

V1. PracticaL CODING SCHEMES

In the previous sections, properties, such as capacity and
spectra, of ideal RLL sequences were treated. Thus we have
now acquired an information-theoretical knowledge on the
key aspects of RLL sequences. In the present section we
take acloser look at the techniques that are available to pro-
duce RLL sequences in a practical manner. It is most impor-
tant that this be done as efficiently as possible within some
practical considerations. The previous sections onideal RLL
sequences provide the cardinal limits. Codes that have
found application outside the laboratory apply to RLL codes
with parameters d = 0, 1,and 2, whichis, of course, reflected
in the survey.

A. Fixed-Length (d, k) Codes

One approach that has proved very successful for the
conversion of arbitrary source information into con-
strained sequences is the one constituted by block codes.
The encoder chops the source sequence into blocks of
length m, and under the code rules such blocks are mapped
onto words of n channel symbols. The obvious method for
the construction of RLL codes is to employ codewords that
can be freely cascaded without violating the sequence con-
straints; the codewords employed have a one-to-one cor-
respondence with the source words. A logical step, then,
is to extend this mechanism to codes, where the transla-
tions are not one-to-one, but are, for example, a function
of the latest codeword transmitted. The source words oper-
ate with a number of alternative translations (or modes);

1750

each of them is interpreted by the decoder in the same way.
During transmission, the choice of a specific translation is
made in such a way that the specified constraints of the
encoded sequence, after transmission of the new code-
word, are not violated. Codes that operate with a unique
representation of the source words are called state-inde-
pendent codes, and codes whose translations are not one-
to-one are called state-dependent codes. The restriction of
state-independent encoding leads, in general, to codes that
are more complex than state-dependent codes for a given
bit-per-symbol value. To clarify this concept we have writ-
ten down a single illustrative case of a (1, ®) code.

The codeword assignment of Table 4 provides a simple
block code that converts source blocks of length m = 3 onto

Table 4 Simple Fixed-Length d = 1 Code

source output
0 000 00000
1 001 00001
2 010 00010
3 0m 00100
4 100 00101
5 101 01000
6 110 01001
7 1M 01010

codewords of length n = 5. The two columns furthest to the
lefttabulate the eight possible source words along with their
decimal representation. The codewords, tabulated in the
right hand column, can be freely cascaded without violat-
ing the d = 1 constraint, since we have selected the first
symbol of the codewords to be a ’zero.” There are exactly
eight codewords of length n — 1 = 4that meet the specified
d = 1 constraint (see also Table 1).

The code rate is m/n = 3/5 < C(1,) = 0.69. The code
efficiency, designated by 5, expressed as the quotient of
code rate and capacity of the ideal sequence with the same
runlength constraints, is

TS TR o - 0% @)
This, actually, demonstrates that good efficiencies are fea-
sible with simple constructions. That this example is not
untypical will be demonstrated in the remainder of this sec-
tion. The decoding of the received codewords can in fact
be achieved in a very simple fashion: the decoder skips the
first symbol of each received codeword, and, using a look-
uptable, it maps the four remaining codeword symbols onto
the retrieved source word. The codewords have been allot-
ted to the source words in an arbitrary fashion, and, evi-
dently, other assignments might be chosen instead. A dif-
ferent map may aim to simplify the implementation of the
look-up tables for encoding and decoding. The case under
study is so simple that implementation considerations are
not worth the effort, but when the codebook is larger, a
detailed study might save many logic gates. A systematic
approach of choosing a specific assignment that simplifies
the look-up function is not available, and only little prog-
ress has been made [16].

It is quite straightforward to generalize the preceding
implementation example to encoders that generate
sequences with an arbitrary value of the minimum run-
length. To that end, choose some appropriate codeword

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

length n. Set the first d symbols of each codeword to “‘zero.”
The number of codewords that meet the given runlength
conditions is Ny(n — d), which can be computed with (2)
or by using Table 1.

A maximum runlength constraint can be incorporated in
the code rules in a straightforward manner. For instance,
in the (1,) block code listed in Table 4, the first codeword
symbol is preset to “zero.” If, however, the last symbol of
the preceding codeword and the second symbol of the
actual codeword to be conveyed are both ‘“zero,” then the
first codeword symbol can be setto ““one’ without violating
the d = 1channel constraint. This extra rule, which governs
the selection of the first symbol, the merging rule, can be
implemented quite smoothly with some extra hardware. It
is readily conceded that with this additional merging rule
the (1,) code, presented in Table 4, turns into a (1, 6) code.
The efficiency of the (1, 6) code is now, as can be verified
with Table 3: 9 = 0.6/C(1, 6) = 0.6/0.669 = 0.897. The process
of decoding is exactly the same as for the simple (1, ») code,
since the first bit, the merging bit, was skipped anyway. The
(1, 6) code is a good illustration of the state-dependent
encoding principle (the actual codeword transmitted
depends on the previous codeword) and state-indepen-
dent decoding (the retrieved source word does not depend
on previous codewords or the channel state).

1) Modified Frequency Modulation: Modified Frequency
Modulation (MFM), arate = 1/2, (1, 3) code, has proved very
popular from the viewpoint of simplicity and ease of imple-
mentation, and has become a de facto industry standard in
flexible and “Winchester”-technology disk drives. MFM is
essentially a block code of length n = 2 with a simple merg-
ing rule when the NRZI notation is employed. The MFM
encoding table is shown in Table 5. The symbol indicated

Table 5 Coding Rules MFM Code

source output
0 x0
1 01

with “x’" is set to “‘zero” if the preceding symbol is ““one”’;
elseitissetto’‘one.” Itcan be verified that this construction
yields a maximum runlength k = 3.

MEFM has high efficiency, n = 0.5/0.5515, or approximately
91 percent. A graphical representation of the finite-state
machine underlying the MFM code, using the NRZI nota-
tion rules, is pictured in Fig. 4. The labelled edges ema-

1101
oo (B~ =@) 1ot

0/00

Fig. 4. Two-state transition diagram that describes the MFM
code.

nating from a state define the encoding rule, and the state
in which an edge terminates indicates the state, or coding
rule to use next. State A represents the condition that the
previous channel bit was a “zero,” while state B indicates
that the previous channel bit was a “one.” Decoding of the
MFM code is simply accomplished by discarding the redun-
dant first bit in each received 2-bit block.

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

B. Fixed-Length Codes of Minimum Length

Aswas already pointed out, the d and k constraints define
a number of channel states. The crucial problem for the
creation of fixed-length codes of minimum length is to find
asubset of the channel states, referred to as principal states,
of any of which there exist a sufficient number of sequences
of length n terminating at other principal states. The exis-
tence of a set of principal states is a necessary and sufficient
condition for the existence of a code with the specified rate
and codeword length. Franaszek [9] developed a technique
of successive elimination for determining the existence of
a set of principal states through operations on the con-
nection matrix. The subsequent procedure, taken from[17],
decides whether there exists a set of principal states for the
specified parameters.

Let the codeword length n and the source word length
mbegiven. The specified channel constraints d and k define
a set of channel states denoted by £ = {q;}. Let further £*
be the set of states that have not been eliminated yet and
0; € L* a state to be tested by the algorithm. The number
V(g;, Z*) of (dk) sequences of length n permitted from g;and
terminating in a state ¢; € Z* is given by

Vo, T = R DY, V={jgel?}, @3
where [D]] denotes the entries of D". If y(g;, £*) < 27, 0; is
eliminated from I*. Starting with £* = L, the algorithm is
continued until either all states have been eliminated, or
till the routine goes through a complete cycle of remaining
states without further elimination. In the latter case, we
know that for any g; € L*,

‘p(oh E*) = Zm!

thus L* is the set of principal states. The foregoing analysis
which is due to Franaszek, can be cast into a form that is
of use later. We introduce an approximate eigenvalue ine-
quality to guide the construction [18].

Letv = (vy, - - -, v+ 9), vi€ {0, 1}, be a vector with binary
elements. A fixed-length code of the specified runlength
constraints and parameters can be ascertained if there is
a binary vector v that satisfies

D" = 2My. (24)

In our context, the vector vis usually called the approximate
eigenvector. For a given code rate R = m/n < C(d, k), the
existence of such an eigenvector is guaranteed by the Per-
ron-Frobenius theory of nonnegative matrices [19]. Itis not
difficult to see that the set {o;,, * - + , 0;,} for whichv;, = - - -
=v;, = 1is the set of principal states.

The following illustrations have been chosen to clarify
some of the points dealt with in the preceding sections.

Example 2: We examine here the construction of a (1, 3)
code. Table 3 indicates that a code rate 1/2 represents 90%
of the channel capacity. Therefore,letm = 1Tand n = 2. The
matrix D? is

D? = (25)

(]

1751

Use of the successive elimination algorithm indicates that
state o, has to be deleted (the row sum for row four is only
one). We eliminate row four and column four. The 3 x 3
submatrix so obtained has row sums which are exactly two.
Thus the principal states are oy, 0, and o3. The codewords
available for encoding associated with the principal states

are
01
W(oy) =
00

01
W(sy) =
10

01
Wi(os) = (26)
10.

A state-independently decodable code can be constructed
with the assignments

W(ay) W(a,) W(a3)
01 01 01
00 10 10

After some rearrangement we obtain the following sim-
plified codebook:

source output
0 x0
1 01

Acomparisonwith Table 5 reveals that this is the MFM code.
O

Example 3: Let d = 2 and k = . The connection matrix
D is given by

10
01
01

O
I
- o ©

The capacity of the channel is (see Table 2)
C(2,) = 0.551.

Itis quite plausible to suppose that fairly short codes exist
with a rate 1/2, and we proceed to show that such a fixed-
length code indeed exists. One can prove that the shortest
fixed-length code with rate = 1/2 has a codeword length of
14. To this end, note that

41 28 60
D“=160 41 88
88 60 129

Allthree states are principal states. We may easily verify that

3

_21 DY} = 129
P

3

2 [DYy = 189
j=1

3
2 (DR = 277.
j=1

1752

Note that indeed in any state more than 2™ = 27 = 128
sequences start and end that comply with the channel
restrictions. To form a rate 7/14 code, we may choose any
128 of the possible 129 sequences and allocate the source
words to the codewords. Perusal of the D' matrix reveals
thatthe lower-right element is greater than 128. In fact, only
one terminal state, namely o3, suffices for encoding. Appar-
ently, this particular code can be state-independently
encoded and decoded (all sequences start and end in state
03). Actually, this outcome is not surprising, for, when we
take a look at Table 1, we notice there are exactly 129 (d =
2) sequences of length 12. The addition of two merging bits,
which are preset to ““zero”, completes the design of a rate
7/(12 + 2), (2, o) block code.

a

The shortest fixed-length codes for a selection of (d, k) com-
binations were computed by Franaszek [20] with the suc-
cessive elimination procedure; the results are collected in
Table 6. We draw attention to the fact that the minimum

Table 6 Shortest Fixed-Length Block Codes of Given Bit-
Per-Symbol Values for a Selection of (d, k) Constraints,
After Franaszek 1970, [20]

d k m n 7 = RIC(, k)
0 1 3 5 0.864
0 2 4 5 0.910
0 3 9 10 0.951
1 3 1 2 0.907
1 7 1 33 0.981
2 5 4 10 0.860
2 7 17 34 0.962
2 10 8 16 0.923
3 7 46 115 0.986
3 11 8 20 0.886
4 9 9 27 0.921
4 14 12 33 0.916
5 12 9 30 0.890
5 17 15 45 0.937

codeword lengths of the fixed-length R = 2/3,(1,7) code and
the R = 1/2,(2,7) code are 33 and 34, respectively. For these
specific cases, adesign with variable-length codewords (see
later) provides shorter word lengths and reduced com-
plexity.

C. Fixed-Length Codes Based an (dkir) Sequences

The previous construction technique has the obvious
drawback that we require a large number of look-up tables
for encoding. As a matter of fact, the number of look-up
tables equals, in general, the number of principal states,
which, if the maximum runlength k is large, can be quite
prohibitive. The following systematic construction tech-
nique constituted by (dkir) sequences has the advantage
that only one look-up table is needed for the generation of
the (dkin sequences, plus some logic to determine the
merging bits used to cascade the (dkir) sequences.

A (dkir) sequence is a (dk) sequence with two additional
constraints:

a) | constraint: the number of consecutive leading
““zeros’’ of the sequence is at most /,

b) r constraint: the number of consecutive trailing
‘“zeros’’ of the sequence is at most r.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

The additional constraints imposed on the number of
“zeros’ atthe beginning and end of the sequence allow the
design of more efficient block codes than provided by the
technique of Tang and Bahl {8].

As already explained, the (dkir) sequences of length n
cannot in general be cascaded without violating the dk con-
straint at the codeword boundaries. Inserting a number 8
of merging bits between adjacent n-sequences makes it
possible to preserve the d and k constraints for the cas-
caded output sequence. A little thought will make it clear
that the (dk) sequences require 8 = d + 2, d > 0, merging
bits, whereas only 8 = d merging bits are required for (dkir)
sequences, provided that / and r are suitably chosen. We
shall now describe two constructions of fixed-length codes
with merging rules of increasing complexity and efficiency.

Construction 1: Choose d, k, r, I, and n’ such that r +
d + I < kand let 8 = d. Then the (dkir) sequences of length
n’ can be freely cascaded without violating the specified d
and k constraints if the 8 merging bits are all set to ““zero.”

Construction 2: Choose d, k, and n’ such that kK = 2d.
Letr =/ = k — d and 8 = d. Then the (dkir) sequences of
length n’ can be cascaded without violating the specified
d and k constraints if the merging bits are governed by the
following rules. Let an n’-sequence end with a run of s
“zeros” (s < r) while the next sequence starts with t(t < /)
leading ‘‘zeros.” Table 7 shows the merging rule for the 8
= d merging bits.

Table 7 Merging Rules of (dklr) Sequences

s, t Merging bits
s+t+d=sk 0¢
s+t+d>k
ifs=<d 0¢-s10°"
ifs>d 109"

In order to demonstrate the efficiency of the codes based
on Constructions 1 and 2 we will consider some specific
cases. Form=8andd=1,---,4andk=2d,: -+ ,20we
have selected n = n’ + d in such a way that the information
rate R was maximized.

Tables 8 and 9 give the results form =8andd = 1,2,3,
and 4. In order to limit the length of the tables, we have
restricted k and ri to those values which maximize the code
rate R. We note that rates up to 95% of the channel capacity
C(d, k) can be attained. It wil! be noticed from the tables

Table 8 Fixed-Length Block Codes based on
Construction 1 -

d k n R n = RIC(d, k)
1 7 12 8/13 0.91
2 17 14 8/16 0.91
3 14 17 8/20 0.87
4 18 19 8/23 0.87
Table 9 Fixed-Length Block Codes based on
Construction 2
d k n’ R n = RIC(d, k)
1 5 12 8/13 0.95
2 10 14 8/16 0.92
3 10 17 8/20 0.90
4 12 19 8/23 0.90

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

that on average there is a slight difference in the code effi-
ciencies obtained by Constructions 1and 2, approximately
three percent in favor of Construction 2. With Franaszek'’s
algorithm it can be verified that the codes presented in Table
9 are of minimum length.

When the code rate R approaches the channel capacity
C(d, k), fixed-length code constructions have the drawback,
as seen in the preceding examples, that the implementa-
tions can be very complex, involving long codewords.

D. Enumerative Coding of (d) Sequences

In the previous examples of codes, we have tacitly
assumed that a table is used to hold all the codewords, and
that we look up the appropriate codeword for the required
source sequence. Specifically, when codewords are com-
paratively long, the method of direct look-up could easily
become an engineering impossibility. We can, however,
create codewords by an algebraic procedure, called enu-
merative encoding, which means that there is no need to
store every codeword in a table. Our objective, in this sec-
tion, is to develop a general enumerative technique for
encoding and decoding (d) sequences. Though the pro-
cedure can be generalized to the encoding and decoding
of (dk) sequences and (dkir) sequences, we confine our-
selves for the momenit to the simpler case of (d) sequences.
To that end, we establish a 1-1 mapping from a set 7(d, n)
of (d) sequences of length n onto a set of integers 0, 1,
-+« ,|Td, M| — 1, where |T(d, n)| = Ng(n)is the cardinality
of T(d, n). Dropping the parameters, the set T can be ordered
lexicographically as follows. If x = (x,_q, * * * , X)) € T and
y=ya-u """, yo €T, thenyis called less than x, in short,
y < x, if there exists an j, 0 < i < n, such thaty; < x; and
x; =y, i <j < n.For example, “00101" < 01010.” The
position of x in the lexicographical ordering of T is defined
to be the rank of x denoted by r(x), i.e., r(x) is the number
of allyin Twithy < x.

Theorem 1: The rank r(x) of the (d) sequences x € T can
be calculated according to

n—-1

rix) = _EO Ng(j)x;. 27)
i<

Proof: See {21].

Example 4: Consider the set: T(d, n) = T(1, 4 of (d = 1)
sequences of length four. We have N;(0) = 1, Nq(1) = 2, N4(2)
=3, N,(3) = 5, and N;(4) = 8. For instance, r(1001) = N,(3)
+ N4(0) = 5 + 1 = 6. We can now quite readily verify the
following transformations:

r(x) X

0 0000
0001
0010
0100
0101
1000
1001
1010

NV AR WN -

0

The inverse function, conversion from a given integer /
to a (dk) sequence with rank / can be carried out as follows.

1753

Inverse Algorithm: Let the set T(d, n) and an integer /, | =
0,1, ,|Td, M| - 1, be given. The following algorithm
finds x such that r(x) = /.

LetT=1.
forj =n — 1step — 1to0do
if I = Ng(j) then xi =1,F =T— Ny(j) else xi = 0.

The ranking technique described in Theorem 1 allows the
realization of channel encoders of moderate complexity.
Encoding and decoding is accomplished by a change of the
weighting system of binary numbers, i.e., from the usual
powers of two representation used in unconstrained binary
sequences to the weights Ny(n — 1), Ny(n — 2), - - - . Storage
capacity is required for approximately n nonzero weighting
coefficients, a full adder, and an accumulator to store the
intermediate and final results. The hardware requirements
have to be compared with a look-up table of 2™ entries if
anonalgebraic method for codingis used. The use of alook-
up table obviously sets a practical limit to the codeword
length which can be decoded. The limit depends on tech-
nology and required bit rate, but figures of n = 12to 14 are
commonly quoted as typical present-day maxima. The enu-
merative decoder will contain some elements, e.g., the
weighting coefficients look-up table which are virtually
identical with the ones in the encoder. The algorithm lends
itself very well to a sequential machine implementation.
Buffering of the received message will certainly be required
whilst encoding and decoding, respectively, are carried out.
The encoding circuitry does not require a multiplier
because the codewords x are binary valued, and so the mul-
tiplications are simple additions. Unfortunately, the reduc-
tion in storage requirements is penalized by an increase in
the difficulty of implementing the extra “random’’ hard-
ware for adding and comparing, which, of course, makes
it less attractive when the codewords are relatively small.
The serial implementation is not, of course, the only pos-
sible one. It would be practical to do encoding and decod-
ing by means of buffering and alarge number of hard-wired
adders.

The preceding algorithms for enumerating codewords
can be generalized to the encoding and decoding of (dk)
sequences and (dkir) sequences.

E. Examples of Code Implementation

In this section, we shall take a closer look at the various
implementations of fixed-length channel codes.

Rate 4/5, (0, 2) Code

The Group-Coded Recording (GCR) code, also known as
““4/5 code,” is used in a large variety of magnetic tape prod-
ucts. In the GCR code, four user bits are uniquely repre-
sented by five channel bits. The constraints placed upon
the code are d = 0 and k = 2. According to Table 3, the
capacity of a sequence with no runs of more than two
“zeros” is C(0, 2) = 0.879. Thus the efficiency of the GCR
code is 7 = 91%. The GCR code is a straightforward appli-
cation of Construction 1. From the 32 possible combina-
tions of five bits, 15 are eliminated because of the (0, 2) con-
straints, leaving 17, from which one can be discarded to
produce the 16 unique patterns required. This one can then
be used as a special pattern, for checking or error detection,

1754

as it obeys the specified constraints. A simple look-up table
is used for encoding and decoding.

3 PM Code

The basic parameters of the 3PM (Three Position Mod-
ulation) code, which was invented by Jacoby [22], are d =
2,k =11and R = 1/2. The encoding mechanism of the 3PM
code is similar to fixed-length block encoding and decod-
ing with one extra rule. The encoding is explained by look-
ing at Table 10. As we may notice, the right-hand boundary

Table 10 Basic Coding Table 3PM Code

Data Code
000 000010
001 000100
010 010000
011 010010
100 001000
101 100000
110 100010
111 100100

position is occupied by ‘‘zeros” in all codewords. If during
concatenation of codewords the d = 2 condition is violated,
that is, if the symbol at position 5 of the present codeword
and also the symbol at position 1 of the next codeword are
“one,” the “merging’’ symbol at position 6 is set to ““‘one”
and the symbols at position 1 and 5 are set to ““zero.” The
encoding logic thatimplements the described merging rule
can be very simple. Decoding is done in a similar way.

Rate 8/9, (0, 3) Code

According to Table 3, the capacity of a sequence with no
runs of more than three ““zeros” is C(0, 3) = 0.947. Using
the same table, we conclude C(0, 2) = 0.879 < 8/9, so that
there is no way to construct a rate 8/9 code with no runs of
more than two "“zeros.” For the specified (0, 3) constraints
we find

208 108 56 29

- 193 100 52 27 8)
| 164 85 44 23 |

108 56 29 15

The existence of a fixed-length code can be determined with
Franaszek’s algorithm. It is verified without much difficulty
that ¢, and o, are the principal states (0; and o, are deleted).
From any principal state there are at least 293 > 256
sequences available. This, in principle, concludes the dis-
cussion. Patel {23] showed, however, that we can do slightly
better. By judiciously discarding a number of potential
codewords he arrived at a code in which the pattern S, =
100010001 is not a codeword and also does not occur any-
where in the coded sequence with original or shifted code-
word boundaries; thus S, can be used as a synchronization
pattern at selected positions in the data stream to identify
format boundaries. A look-up table, or alternatively the
enumerative encoding technique, may be used for encod-
ing and decoding; however, in this case a comprehensive
word allocation can be obtained to create simple Boolean
equations for encoding and decoding. The codeword

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

assignment, which was given by Patel (see [24], volume 2),
provides simple and inexpensive encoder and decoder
logic. The allocation is based on the ‘‘divide and conquer”’
principle. Any 9-bit codeword is partitioned into three parts:
two 4-bit subcodewords and one merging bit. The 8-bit
source block is partitioned into two 4-bit digits. The two
4-bit source words are mapped onto the two 4-bit sub-
codewords using small look-up tables. Some extra hard-
ware is needed for determining the merging bit.

Eight-to-Fourteen Modulation (EFM) Code

The designers of the Compact Disc [4] system chose, after
ample experimental evidence, an RLL code with minimum
runlength d = 2. The code operates under a second con-
straint, namely that the dc-content or low-frequency con-
tent of the coded bit stream should be as small as possible.
The reason for this is that the servo systems used for track
following and focusing [25] are controlled by the low-fre-
quency components of the signal read from the disc, and
the signal could therefore interfere with the servo systems.
In the Compact Disc system, the frequency range from 20
kHz to 1.5 MHz is used for information transmission; the
servo systems operate on signals in the range 0-20 kHz. The
design team opted for a fixed-length block structure. A
source block length m = 8 is an adequate choice, since the
entire format (16-bit audio samples, error correction, etc.)
is byte oriented. Table 6 reveals that a fixed-length block
code with the parameters R = 8/16, d = 2and k = 10 is fea-
sible. Specifically, from Table 9 we conclude that a code
based on Construction 2 with fourteen information and two
two merging bits is possible. in order to reduce the com-
plexity of the decoder logic that transforms the fourteen
channel bits into eight data bits, the relationship between
data patterns and code patterns have to be optimized. The
codebook was compiled with the aid of computer opti-
mization in such a way that the translation in the player can
be carried out with the simplest possible circuit, i.e., a cir-
cuit that contains the minimum of logic gates. In the Com-
pact Disc player, the EFM conversion is performed with a
programmed logic array of approximately 50 logic func-
tions. Part of the EFM coding table is presented in Table 11,

Table 11 Part of the EFM Coding Table

Data Code Data Code
100 01000100100010 114 10010010000010
101 00000000100010 115 00100000100010
102 01000000100010 116 01000010000010
103 00100100100010 117 00000010000010
104 01001001000010 118 00010001000010
105 10000001000010 119 00100001000010
106 10010001000010 120 01001000000010
107 10001001000010 121 00001001001000
108 01000001000010 122 10010000000010
109 00000001000010 123 10001000000010
110 00010001000010 124 01000000000010
111 00100001000010 125 00001000000010
112 10000000100010 126 00010000100010
113 10000010000010 127 00100000000010

which shows the decimal representation of the 8-bit source
word (left column) and its 14-bit channel representation
(right column). Space limitations prohibit the presentation
of the complete table, for full details the reader is advised
to consult the patent literature [26].

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

The merging bits are primarily intended to ensure that
the runlength conditions continue to be satisfied when the
codewords are cascaded. If the runlength is in danger of
becoming too short, we choose ‘“‘zeros” for the merging
bits; if it is too long we choose a “one”’ for one of them. If
we do this, we still retain a large measure of freedom in the
choice of the merging bits, and we use this freedom to min-
imize the low-frequency content of the signal. In itself, two
merging bits would be sufficient for continuing to satisfy
the runlength conditions. A third merging bit is necessary,
however, to provide sufficient freedom for effective
suppression of low-frequency content, even though it
entails a loss of six percent of the playing time. The three
merging bits are redundant, and they are removed from the
bit stream in the demodulator.

Figure 5 illustrates, finally, how the merging bits are
determined. Our measure of the low-frequency content is

databits 5000 0 1]0 1. 000 1 1 4]

(B2) \

channel bits 100001001 10IXMMIo0 1 100100100M
(83) | |
P
XMoo [[L i LT L
xmot0 [LT L LT
1
xav-oor [L L L L
i i
. . 1, 010
RDS | I \'\ /'/ \'\ /?l
AN Sy 001
C 0NN A
1 Y%
h /\ /\.‘
| A4 N 000

Fig. 5. Strategy for minimizing the running digital sum
(RDS). Eight user bits B, are translated into fourteen channel
bits B, the fourteen bits are merged by means of three merg-
ing bits in such away that the runiength conditions continue
to be satisfied. The condition that there should be at least
two ““zeros”’ between “‘ones’” requires a ‘“zero” at the first
merging bit position. In this case there are thus three alter-
natives for the merging bits: */000,” “/010,” and “001.” The
encoder chooses the alternative that gives the lowest abso-
lute value of the RDS at the end of a new codeword, i.e.,
000" in this case.

the running digital sum (RDS); this is the difference between
the totals of “zeros” and ‘“ones’” accumulated from the
beginning of the disc. At the top are shown two 8-bit data
words of B, and their translation from the codebook into
channel symbols (B,). From the d constraint, the first of the
merging bits in this case must be a “‘zero”’; this position is
marked “x.” In the two following positions, the choice is
free; these are marked “m.” The three possible choices xmm
= 000, 010, and 001 would give rise to the patterns as illus-
trated, and to the indicated waveform of the RDS, on the
assumption that the RDS was equal to 0 at the beginning.
The system now opts for the merging combination that
makes the RDS at the end of the second codeword as close
to zero as possible, i.e., 000 in this case. If the initial value
had been -3, the merging combination 001 would have
been chosen.

When this strategy is applied, the noise in the servo-band
frequencies (<20 kHz) is suppressed by about 10 dB. In
principle better results can be obtained, within the agreed
standard for the Compact Disc system, by looking more than

1755

one word ahead, since minimization of the RDS in the short
term does not always contribute to longer-term minimi-
zation [27]. This more sophisticated algorithm is not imple-
mented in the present equipment.

F. Variable-Length Synchronous Codes

As we have learned in the preceding section, attempts to
increase fixed-length state-dependent code efficiency result
in increased codeword length, and thus in rapidly mount-
ing coder and decoder complexity. Variable-length codes,
which may combine the advantages of short and long word
lengths, are frequently profitable in terms of hardware
complexity. The basis of variable-length synchronous codes
was laid by Franaszek with his pioneering work reported
in [9]. Variable-length codes offer the possibility of using
short words more frequently than those of longer lengths.
This often permits a marked reduction in coder and decoder
complexity relative to a fixed-length code of like rate and
sequence properties.

The structure of variable-length codes required to com-
ply with sequence properties is quite similar to that of fixed-
length codes. A number of special features, however, arise
from the presence of words of different lengths. The
requirement of synchronous transmission, coupled with
the assumption that each word carries an integer number
of information bits, implies that the codeword lengths are
integer multiples of a basic word length n, where n is the
smallest integer for which the bit per symbol ratio m/n is
that of two integers. That is, words of length n carry half as
many information bits as those of 2n. To apply the recursive
procedure, a basic codeword length n and source word
length m are chosen, along with a maximum length Mn.
Words may be of length jn,j = 1,2, - - -, M. The routine
involves operations on powers of the D matrix. Two excel-
lent representatives of variable-length codes, to be dis-
cussed in the next case studies, are due to Franaszek.

Example 5: Choose the same runlength parameters as in
Example 3, namely d = 2and k = . After a tedious process
of elimination of sequence states, the details of which can
be found in[9], a code can be constructed as shown in Table
12.

Table 12 Variable-Length Synchronous (2,) Code

Data Code
0 - - 00
10 e 0100
1 Aadind 1000

If the input symbol is “zero,” 00" would be transmitted.
Otherwise, the encoder would transmita ““0100” or a *1000"
depending on whether the next symbol was a ‘“zero” or a
“one,” respectively. By inspection it is clear that the three
codewords can be cascaded without violating the d = 2
channel constraint. The encoding scheme may be readily
implemented with a three-state finite-machine encoder.
Decoding can be accomplished without explicitly knowing
where the blocks of variable length start or end, that is, the
code is self-punctuating (the two-bit synchronization is sup-
posed to be maintained). The code in hand is self-punc-
tuating, because it satisfies the prefix condition. A variable-
length block code is a set of {c,, ..., cy_4} of M binary

1756

strings. If the codeword c, is not the beginning of ¢, for any
u # v and for all u, then the code is called a prefix code.

This elementary example illustrates very well the advan-
tage of the variable length block coding approach and it
actually shows how the fixed-length block code with a 128-
word dictionary (see Example 3) may be replaced by one
with only three words.

Rate 1/2, (2, 7) Code

The variable-length code pointed out in the previous
example can be slightly modified to incorporate a maxi-
mum runlength constraint. Table 13(a) discloses the code

Table 13a Variable-Length Synchronous (2, 7) Code.

Data Code
10 Al 1000

1 - > 0100

01 - 000100
010 - 001000
000 - - 100100
0011 Ealied 00100100
0010 - > 00001000

table of the rate 1/2, (2, 7) code, which constitutes the bed-
rock of the IBM3370 and 3380 high-performance rigid disk
files [3].

The encoding of the incoming data is accomplished by
dividing the source sequence into two-, three-, and four-bit
partitions to match the entries in the code table, and then
mapping them into the corresponding channel represen-
tations. The next example describes how the codebook is
to be used. Let the source sequence be 010111010, (first
input bit to the left) then after the appropriate parsing, we
obtain

in: 010111010 - - -,

which, using Table 13(a), is transformed into the corre-
sponding output sequence

out: 001000 0100 1000 1000 - - -

The companion Table 13(b) shows the same codewords and
a permutation of the codeword assignments (there are 24

Table 13b Variable-Length Synchronous (2, 7) Code

Data Code
10 - = 0100

m - - 1000

011 - — 001000
010 - - 100100
000 - - 000100
0011 - - 00001000
0010 - - 00100100

permutations of the above correspondences). It is worth
pointing out here that the assignment rules, which at first
sight seem (again) quite arbitrary, are the outcome of a judi-
cious choice, which will become clear in the following.
The code conforms to the prefix condition and is there-
fore self-punctuating. In the case of Table 13(b), decoding
of the received message can be achieved with a shift reg-
ister of length eight. The incoming message is shifted into
the register every two channel clock cycles, the contents

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

of the register are decoded with the Boolean expression [2]
dy = X4Xq + X;X5X3 + X3Xg + Xg, 29)

where dj is the decoded symbol and x;, 1 < i < 8, denote
the contents of the shift register. As can be seen from the
above Boolean expression, the extension of errors in the
decoded data due to single channel symbol errors is lim-
ited: any error in a received channe! bit may entail a decod-
ing error in up to two subsequent decoded data bits, the
current data bit and up to one preceding data bit. Thus, no
error in a received bit is propagated beyond at maximum
four decoded data bits. The correspondence Table 13(a) as
originally presented by Franaszek [28] has the drawback that
it needs a shift register of length twelve, which increases
error extension to at most six decoded symbols. This exam-
ple demonstrates that the allocation of codewords in a
variable-length code may have a crucial effect on the error
extension characteristic of the code. How the assignments
should be chosen in order to minimize error extension
effects is up till now an unsolved problem. Inspection of
Table 6 reveals that the shortest fixed-length block code
that generates a (2, 7) code has codeword length 34. Evi-
dently, the variable-length synchronous code is much more
attractive with respect to hardware requirements.

G. Look-Ahead Encoding Technique

Another class of design techniques documented in the
literature [29], [22], [30], [31], [18], [32] is called future-depen-
dent or look-ahead (LA) coding. A block code is said to be
look-ahead if the encoding and decoding of a current block
may depend on upcoming symbols. The coding schemes
may also depend on the current state of the channel and
on past as well as future symbols. This technique has been
used to produce several practical and quite efficient RLL
codes. The code design is guided by the approximate eigen-
vector inequality. Let the code rate be m/in < C(d, k), where
m and n, are positive integers. As said before, an approx-
imate eigenvector v is a nonnegative integer vector, in this
context not necessarily two-valued, satisfying

D = 2Mv. (30

If the matrix D" does not have a submatrix with row sums
atleast 2™, then some component v will be larger than unity
and look-ahead is required. In [18] an approach to finding
such avector in practice is given. Whatever method is used,
there may be multiple solutions for the vector v. The choice
of the vector may affect the complexity of the code so con-
structed. The largest component of v determines the max-
imum look-ahead span, and the presence in v of any entries
that are not powers of two complicates the coding rules.
An example of a code design based on the look-ahead
method is the rate 2/3, (1, 7) code.

Rate 2/3, (1, 7) Code

Sequences with runlength constraints d = 1and k = 6
have the information capacity 0.669, see Table 3, and thus
a rate 2/3 code is feasible. A practical encoding and decod-
ing algorithm for such a rate 2/3 code is not published in
the literature, but rate 2/3 codes with constraints (1, 7) are
available in various forms. Jacoby and Kost [32] described
atwo-thirds rate (1, 7) code with full-word look-ahead, which
is used in a particular magnetic disk file. To understand the

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

Table 14a Basic Coding Table (1, 7) Code

Data Code
00 101
01 100
10 001
1 010

algorithm of the 2/3-rate look-ahead code we commence
with the basic encoding table, presented in Table 14(a). The
2/3-rate code is quite similar to a fixed-length block code,
where data words of two bits are converted into codewords
of three bits. The basic encoding table lists this conversion
for the four basic source words. Encoding is done by taking
one source word at a time and always looking ahead to the
next source word. After conversion of the source symbols
to code symbols, and provided there is no violation of the
d constraint at the codeword boundaries, the first code-
word (the first three bits) wil be made final.

There is always the possibility that the last word, up to
the point reached in the encoding process, may change
when we look ahead to the next word. When the d con-
straint is violated—there are four combinations of code-
words that indeed may lead to this—we require substitu-
tions in order to eliminate successive ‘“ones.” The process
of substitutions in these four combinations is revealed in
Table 14(b). The encoding function can be expressed in the

Table 14b Substituting Coding Table (1, 7) Code

Data Code

00.00 101.000
00.01 100.000
10.00 001.000
10.01 010.000

form of Boolean equations. In decoding the codewords,
those cases in which substitution is made during encoding
can be treated without ambiguity, because all three bits of
the succeeding codeword are simultaneously "“zero.”

H. Sliding Block Code Algorithm

The sliding block coding algorithm of Adler, Copper-
smith, and Hassner [33] evolved from a field of abstract
mathematics known as symbolic dynamics. The key ideain
this construction method is that one modifies the finite-state
transition machine by splitting and merging some of the
channel states to obtain a new finite-state machine. An
example, taken from [34], may serve to illustrate the idea.

Example 6: We construct a rate 2/3, (0, 1) code. The con-
nection matrices D and D? are

11 3 2
D=[} D3=[] (31
10 21

The finite-state transition diagrams associated with D and
D? are shown in Fig. 6. An eigenvector inequality is given

by
3 27(2 2
D3v=[”]22{}=2zv. (32)
2 111 1

The approximate eigenvector v = (2, 1) indicates that state
1 will be split into two states, while state 2 will not be split.

1757

1 /0—*@ 101 %/_;12\\®)
- led 110

111 111
() (b)
Fig. 6. (a) Finite-state transition diagram of (0,1) sequence.

(b) Finite-state transition diagram of third extension of (0,1)
sequence. After Siegel 1985 [34].

The two states into which state 1 is split are called 1" and
12. The outgoing edges of state 1 are partitioned into two
groups which are assigned to the two ‘offspring’ states. All
edges which entered state 1are redirected to both offspring
states in the split finite-state diagram. The splitting rule
requires that the sum of the weights, where the weight of
a state is defined as the value of the corresponding com-
ponent of v, of the terminal states of edges in a group must
be an integer multiple of the approximate eigenvalue, 22,
with the possible exception of one group. We split the edges
into groups (011, 110, 010) and (101, 111), both of which have
total weight 4. The resultant diagram is shown in Fig. 7. It

011

110
010
01

//®

110
101 111011 @D

e

111
Fig. 7. Split graph. After Siegel 1985 [34].

generates the same set of strings as D?, but has at least four
outgoing edges from each state. By discarding and merging
of states we obtain a finite-state machine representation of
the encoder (see Fig. 8).

10110
11/010

01/011 10/101
00/011 —_— T

00/101
01/111 11/111

Fig. 8. Finite-state machine representing a (0,1) code. After
Siegel 1985 [34].

Decoding can be established with a shift register of length
six, and therefore the error extension effect is confined to
at most four data bits. O

VH. CONCLUSIONS AND REMARKS

This survey has presented a description of a number of
properties of run-length-limited sequences. In the last part
of this paper, we have provided the reader with a large
assortment of construction techniques. A priori, it is hard
to say which of these techniques is ’best.” Variable-length,
sliding block, and look-ahead codes can, as we have dem-
onstrated, yield dramatic reduction in complexity of the

1758

encoder and decoder for codes of certain rates. Notably
codes with rate 1/2 or 2/3 can be designed very efficiently
in this manner, and it is scarcely conceivable that one could
improve their performance and/or hardware requirements.
If the code rate is of the form m/n, m and n large, code
designs based on (dkir) sequences may offer a more attrac-
tive solution. Look-up tables or enumerative coding may be
used; however, in some instances a comprehensive word
assignment can be discovered that allows the use of Bool-
ean equations for encoding and decoding.

REFERENCES

[1} S. M. C. Borgers, W. A. L. Heijnemans, E. de Niet, and P. H.
N. de With, ““An experimental digital VCR with 40 mm drum,
single actuator and DCT-based bit-rate reduction,’ IEEE Trans.
Consumer Electr., vol. CE-34, pp. 597-605, Aug. 1988.

[2]). S. Eggenberger and P. Hodges, “’Sequential encoding and
decoding of variable word length, fixed rate data codes,” US
Patent 4,115,768, 1978.

[3] T.D.Howell, “Analysis of correctable errors in the IBM 3380
disk file,” IBM J. Res. Develop., vol. 28, no. 2, pp. 206-211,
March 1984.

4] J.P.).HeemskerkandK.A.S.Immink, “Compactdisc: System
aspects and modulation,” Philips Techn. Review, vol. 40, no.
6, pp. 157-164, 1982.

[51 C. V. Freiman and A. D. Wyner, “Optimum block codes for
noiseless input restricted channels,” Information and Con-
trol, vol. 7, pp. 398-415, 1964.

f6] W. H. Kautz, “Fibonacci codes for synchronization control,”
IEEE Trans. Inform. Theory, vol. IT-11, pp. 284-292, 1965.

[71 A.Gabor, “Adaptive coding for self-clocking recording,” IEEE
Trans. Electronic Computers, vol. EC-16, pp. 866-868, Dec.
1967.

[8] D. T. Tang and L. R. Bahl, “Block codes for a class of con-
strained noiseless channels,” Information and Control, vol.
17, pp. 436-461, 1970.

[9) P. A. Franaszek, ‘‘Sequence-state encoding for digital trans-
mission,” Bell Syst. Tech. J., vol. 47, pp. 143-157, Jan. 1968.

[10] N.N.Vorobév, Fibonacci Numbers. Gainsville New Classics
Library, 1983.

[11] C.E. Shannon, ‘’A mathematical theory of communication,”
Bell Syst. Techn. J., vol. 27, pp. 379-423, july 1948.

[12] A. Gallopoulos, C. Heegard, and P. H. Siegel, “The power
spectrum of run-length-limited codes,” IEEE Trans. Com-
mun., vol. COM-37, pp. 906-917, Sept. 1989.

[13] T. D. Howell, “Statistical properties of selected recording
codes,” IBM J. Res. Develop., vol. 33, no. 1, pp. 60-73, Jan.
1989.

[14] K. A.S.Immink, “Some statistical properties of maxentropic
runlength-limited sequences,” PhilipsJ. Res., vol. 38, pp. 138-
149, 1983.

[15] E. Zehavi and). K. Wolf, “On runlength codes,” IEEE Trans.
Inform. Theory, IT-34, pp. 45-54, Jan. 1988.

[16] L.). Fredrickson and J. K. Wolf, “Coding using multiple block
(d, k) codes,” Proceedings IEEE Conf. on Communications,
pp. 1623-1627, June 1989.

[17) P.A.Franaszek, “On synchronous variable-length coding for
discrete noiseless channels,” Information and Control, vol.
15, pp. 155-164, 1969.

[18] A. Lempel and M. Cohn, “Look-ahead coding for input-re-
stricted channels,” IEEE Trans. Inform. Theory, vol. IT-28, pp.
933-937, Nov. 1982.

[19] R. S. Varga, Matrix lterative Analysis. Prentice-Hall, Inc.,
Englewood Cliffs, 1962.

[20] P.A.Franaszek, “Sequence-state methods for run-length-lim-
ited coding,” IBM J. Res. Develop., vol. 14, pp. 376-383, July
1970.

[21] G.F.M.BeenkerandK.A.S.Immink, “‘A generalized method
for encoding and decoding runlength-limited binary
sequences,’’ IEEE Trans. Inform. Theory, vol. IT-29, pp. 751-
754, Sept. 1983.

[22] G.V.Jacoby,’Anew look-ahead code forincreasing dataden-
sity,”” IEEE Trans. Magn., vol. MAG-13, pp. 1202-1204, no. 5,
Sept. 1977. See also patent GB 1590404 June 1981.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 11, NOVEMBER 1990

[23] A. M. Patel, “Improved encoder and decoder for a byte-ori-
ented rate 8/9, (0, 3) code,’”” IBM Techn. Disclosure Bull., vol.
28, pp. 1938, 1985.

[24] C. D. Mee and E. D. Daniel, Magnetic Recording. McGraw-
Hill Book Company, New York, 1987.

[25]1 M. G. Carasso, J. B. H. Peek, and J. P. Sinjou, ““The compact
disc digital audio system,” Philips Techn. Review, vol. 40, no.
6, pp. 151-156, 1982.

[26] K.A.S.Immink and H. Ogawa, ““Method for encoding binary
data,” US Patent 4,501,000, Feb. 1985.

[27] K. A. S. Immink and U. Gross, ““Optimization of low-fre-
quency properties of eight-to-fourteen modulation,” Proc.
Fourth Int. Conf. Video and Data Recording, Southampton,
pp. 375-384, 1982, also in The Radio and Electronic Engineer,
vol. 53, no. 2, pp. 63-66, Feb. 1983.

[28] P. A. Franaszek, “Run-length-limited variable length coding
with error propagation limitation,” US Patent 3,689,899, Sept.
1972.

[29] A. M. Patel, ““Zero-modulation encoding in magnetic record-
ing,” IBM J. Res. Develop., vol. 19, pp. 366-378, July 1975.

[30] P. A. Franaszek, “Construction of bounded delay codes for
discrete noiseless channels,” IBM J. Res. Develop., vol. 26,
pp. 506-514, 1982.

[31] M.CohnandG.V.Jacoby, “Run-length reduction of 3PM code
via look-ahead technique,” IEEE Trans. Magn., vol. MAG-18,
pp. 1253-1255, Nov. 1982.

321 G. V. Jacoby and R. Kost, “‘Binary two-thirds rate code with
full word look-ahead,” IEEE Trans. Magn., vol. MAG-20, pp.
709-714, Sept. 1984. See also M. Cohn, G. V. Jacoby, and C.
A. Bates, US Patent 4,337,458, June 1982.

[33]1 R.L.Adler, D.Coppersmith,and M. Hassner, ‘Algorithms for
sliding block codes. An application of symbolic dynamics to
information theory,” IEEE Trans. Inform. Theory, vol. IT-29, pp.
5-22, Jan. 1983.

[34] P.H. Siegel, “Recording codes for digital magnetic storage,”
IEEE Trans. Magn., vol. MAG-21, pp. 1344-1349, no. 5, Sept.
1985.

BIBLIOGRAPHY AND SURVEY PAPERS

[35] G. Bouwhuis,). Braat, A. Huijser, J. Pasman, G. van Ros-
malen, and K. Schouhamer Immink, Principles of Optical
Disc Systems. Adam Higler Ltd., Bristol and Boston, 1985.

[36]). Isailovic, Videodisc and Optical Memory Systems. Pren-
tice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

[37]). Watkinson, The Art of Digital Audio. Focal Press, London,
1988.

(38] K. W. Cattermole, Principles of Pulse Code Modulation.
lliffe Books Ltd, London, 1969.

SCHOUHAMER IMMINK: RUNLENGTH-LIMITED SEQUENCES

[39] K.W. Cattermole and J. . O'Reilly, Problems of Randomness
in Communication Engineering, vol. 2, Pentech Press, Lon-
don, 1984.

[40] K. W. Cattermole, “‘Principles of digital line coding,” Int. J.
Electron., vol. 55, pp. 3-33, July 1983.

[41] F.Jorgensen, The Complete Handbook of Magnetic Record-
ing. TAB Books, Blue Ridge Summit, Pennsylvania, July 1980.

[42] H.Kobayashi, “A survey of coding schemes for transmission
or recording of digital data,”” IEEE Trans. Commun. Techn.,
vol. COM-19, pp. 1087-1099, Dec. 1971.

[43] N. D. Mackintosh, ‘“The choice of a recording code,” Proc.
Int. Conf. on Video and Data Recording, lERE Conf. Proc. 43,
Southampton, pp. 77-120, July 1979.

[44] R.W.Wood, ‘“Magnetic recording systems,” Proc. IEEE, vol.
74, pp. 1557-1569, Nov. 1986.

[45] R. E. Blahut, Principles and Practice of Information Theory.
Addison Wesley, 1987.

[46] K. A. S. Immink, Coding Techniques for Digital Recorders.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990.

Kees A. Schouhamer Immink (Fellow, IEEE)
was born in Rotterdam, The Netherlands,
on December 18, 1946. He received the B.S.
degree from the Rotterdam Polytechnic in
1967, and the M.S. and Ph.D. degrees from
the Eindhoven University of Technology in
1974 and 1985, respectively, all in electrical
engineering.

He joined the Philips Research Labora-
tories, Eindhoven, in 1968. His work first
involved the signal processing side of opti-
cal recording systems, and he later became responsible for the
design and development of channel coding techniques for the
Compact Disc, Compact Disc Video, and experimental erasable
optical audio discs. In 1986, he was appointed senior scientist of
the Philips Research magnetic recording group. He is the author
of numerous papers in the field of coding techniques for optical
and magnetic recorders, of the book Coding Techniques for Digital
Recorders, and is a co-author of the book Principles of Optical Disk
Systems. He holds more than thirty patents, mainly in the area of
optical recording.

Dr. Immink was awarded a Fellowship by the Audio Engineering
Society in 1985 for “‘his work in the area of optical laser disc and
for detailed study of channel codes for the Compact Disc.” He is
also a Fellow of the Institution of Electrical Engineers (London).

1759

