
Matlab Optimization

Arnab Sarkar, Sonal Varshney

The MATLAB Optimization Toolbox 1 is a collection of functions that extend the capability
of the MATLAB numeric computing environment. The toolbox includes routines for many types
of optimization including:

• Unconstrained nonlinear minimization

• Quadratic and linear programming

• Nonlinear least squares and curve-fitting

• Nonlinear system of equation solving

• Constrained linear least squares

• Sparse and structured large-scale problems

• Constrained nonlinear minimization, including goal attainment problems, minimax problems,
and semi-infinite minimization problems

1 Optimization functions

The following table lists the types of problems in order of increasing complexity and the associated
functions that invoke such an optimization process in MATLAB.

Type Function
Scalar Minimization fminbnd

Unconstrained Minimization fminunc or fminsearch
Linear Programming linprog

Quadratic Programming quadprog

Constrained Minimization fmincon

Goal Attainment fgoalattain

Minimax fminimax

Semi-Infinite Minimization fseminf

1.1 Unconstrained Minimization

Consider the problem of finding a set of values [x1, x2] that solves

minimize xf(x) = ex1(4x2

1
+ 2x2

2
+ 4x1x2 + 2x2 + 1) (1)

To solve this problem we write an M-file that returns the function value. We then invoke the
unconstrained minimization routine fminunc.

objfun.m
function f = objfun(x)

f = exp(x(1))*(4*x(1)∧2+2*x(2)∧+4*x(1)*x(2)+2*x(2)+1);

Now we invoke the optimization routine
x0 = [-1,1]

options = optimset(‘LargeScale’,‘off’);

1To know more about the MATLAB Optimization Toolbox, visit http://www.mathworks.com/products/optimization/

1

[x,fval,exitflag,output] = fminunc(‘objfun’, x0, options); And we get the result as:
x = 0.5000 -1.0000

The functions at the solution x is returned in fval

fval = 1.3030e-10

The exiting flag tells if the algorithm converged. An exitflag > 0 means a local minimum
was found:
exitflag =1

1.2 Nonlinear Inequality constrained Minimization

If inequality constraints are added to Equation(1), the resulting problem may be solved by the
fmincon function. For example, find x that solves:

minimizex f(x) = ex1(4x2

1
+ 2x2

2
+ 4x1x2 + 2x2 + 1)

subject to x1x2 − x1 − x2 ≤ −1.5

x1x2 ≥ −10

We write confun.m for the constraints
function [c, ceq] = confun(x)

c = [1.5 + x(1)*x(2) - x(1) - x(2); - x(1)*x(2) - 10];

ceq = [];

We now invoke constrained optimization routine:
x0 = [-1, 1]

options = optimset(‘LargeScale’, ‘off’);

[x,fval] = fmincon(‘objfun’, x0, [],[],[],[],[],[], ‘confun’,options)

The solution x produced with function value fval is:
x = -9.5474 1.0474

fval = 0.0236

2 Portfolio Optimization

We will consider the example given by Prof. Shabbir Ahmed (ISyE 6673) 2 and solve it using
MATLAB. In short, we will minimize a quadratic function subject to some constraints. Observe
that the quadratic function quantifies the notion of risk in the investment problem.

The Mathematical Problem

Indices:
i = Stocks(IBM,WMT,SEHI)
Parameters:
B = Investment budget.
R = Desired expected return.
r̄i =Expected return of stock i.
σij = Covariance of the return of stock i to that of stock j.
Variables: xi = Amount of money to invest in stock i.

Formulation:

2For course details, visit http://www.isye.gatech.edu/∼sahmed/isye6673

2

min
3∑

i=1

3∑

j=1

xixjσij

s.t.

3∑

i=1

xi ≤ B,

3∑

i=1

r̄ixi ≥ R,

xi ≥ 0, i = 1, 2, 3.

Data:
B=1000.00, R = 50.00.

σij IBM WMT SEHI
IBM 0.017087987 0.003298885 0.001224849
WMT 0.003298885 0.005900944 0.004488271
SEHI 0.001224849 0.004488271 0.063000818
r̄i 0.026 0.008 0.074

2.1 Solving by Matlab

We solve the quadratic programming problem

min
x

1

2
xT Hx + fT x

s.t.Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

where H , A, and Aeq are matrices, and f , b, beq, lb, ub, and x are vectors by”

2.2 Running the program

x = quadprog(H,f,A,b) returns a vector x that minimizes 1/2*x’*H*x + f’*x subject to A*x

<= b. Before running quadprog create the matrices H, A and the vectors f, b as shown in the next
page.

>> x = quadprog(H,f,A,b)

Warning: Large-scale method does not currently solve this problem formulation,

switching to medium-scale method.

Optimization terminated successfully.

x =

500.0000

0

500.0000

From the optimization problem solution, our optimal decision is to invest 500 Dollars in IBM
stocks, and 500 Dollars is SEHI stocks. Observe the warning message 3 when quadprog is
used. Also, observe the values of x which is a bit different from what is obtained from
GAMS (Refer to Appendix for solution of the problem by GAMS).

3The large-scale algorithm is a subspace trust-region method based on the interior-reflective Newton method.
Each iteration involves the approximate solution of a large linear system using the method of preconditioned con-
jugate gradients (PCG).

3

example.m

Store this program in a file example.m and do >> example before you do >> x = quadprog(H,f,A,b).

for i=1:3

for j=1:3

H(i,j) = 0;

end

end

H(1,1) = 0.017087987;

H(1,2) = 0.003298885;

H(1,3) = 0.001224849;

H(2,1) = 0.003298885;

H(2,2) = 0.005900944;

H(2,3) = 0.004488271;

H(3,1) = 0.001224849;

H(3,2) = 0.004488271;

H(3,3) = 0.063000818;

for i=1:5

for j=1:3

A(i,j) = 0;

end

end

A(1,1) = 1;

A(1,2) = 1;

A(1,3) = 1;

A(2,1) = -0.026;

A(2,2) = -0.008;

A(2,3) = -0.074;

A(3,1) = -1;

A(3,2) = 0;

A(3,3) = 0;

A(4,1) = 0;

A(4,2) = -1;

A(4,3) = 0;

A(5,1) = 0;

A(5,2) = 0;

A(5,3) = -1;

f = [0 0 0];

b = [1000 -50 0 0 0];

b = b
′

;

2.3 Functions for different constraint types

• x = quadprog(H,f,A,b) returns a vector x that minimizes 1/2*x’*H*x + f’*x subject to
A*x <= b.

• x = quadprog(H,f,A,b,Aeq,beq) solves the preceding problem while additionally satisfying
the equality constraints Aeq*x = beq.

• x = quadprog(H,f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the
design variables, x, so that the solution is in the range lb <= x <= ub.

• x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.

4

• x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the optimization op-
tions specified in the structure options. Use optimset to set these options.

3 Large-scale and Medium scale problems

It would be appropriate to mention something more about Large-scale and Medium scale problems
at this time since we encountered it in the WARNING message in the given example.

The MATLAB toolbox separates “medium-scale” algorithms from “large-scale algorithms. Medium-
scale is not a standard term and is used here only to differentiate these algorithms from large-scale
algorithms, which are designed to handle large-scale problems efficiently.

3.1 Medium-scale problems (Trivia!)

The optimization toolbox routines offer a choice of algorithms and line search strategies.

✔ The principal algorithms for unconstrained minimization are the Nelder-Mead simplex search

method and the BFGS quasi-Newton method.
✔ For constrained minimization, minmax, goal attainment and semi-infinite optimization, varia-
tions of Sequential Quadratic Programming are used.
✔ Nonlinear least square problems use the Guass-Newton and Levenberg-Marquardt methods.
✔ A choice of line search (or 1-D search) strategy is given for unconstrained minimization and non-
linear least squares problems. The line search strategies use safeguard cubic interpolation (with
analytical gradient functions) and quadratic interpolation and extrapolation (without analytical
gradient functions) methods.

3.2 Large-scale problems (An insider’s view)

All the large-scale algorithms, except linear programming, are TRUST-REGION methods.

✗ Bound constrained problems are solved using reflective Newton methods.
✗ Equality constrained problems are solved using projective preconditioned conjugate gradient it-

eration.
✗ One can use sparse iterative solvers or sparse direct solvers in solving the linear systems to de-
termine the current steps. Some choice of preconditioning in the iterative solvers is also available.

Finally,
The linear programming method is a variant of Mehrotra’s predictor-corrector algorithm, a primal

dual interior point method.

5

APPENDIX

Solving by GAMS

We will now solve the Financial Optimization problem by GAMS. Note the differences in the

results. The basic structure of a mathematical program in GAMS requires the programmer to
declare the:

• SETS of indices over which the problem is defined and assign its members.

• parameters and assign their values using PARAMETER, TABLE or SCALAR.

• VARIABLES and their types.

• EQUATIONS.

• MODEL.

• provide SOLVE statements.

• instruction for DISPLAY of solutions.

Input Output
opti.gms opti.lst

Sets Echo print
Data Reference Maps

Variables Equation Listings
Equations Status Reports

Model Specification Results
Solve Statement

Input File

We will solve the earlier example by GAMS. Note that GAMS is case sensitive. The program is
written in the sequence as discussed above.

File opti.gms
sets i/1*3/;

alias (i,j);

parameter rbar(i)

/

1 0.0260023

2 0.008100891

3 0.073774971

/;

table sigma(i,i)

1 2 3

1 0.017087987 0.003298885 0.001224849

2 0.003298885 0.005900944 0.004488271

3 0.001224849 0.004488271 0.063000818

;

scalar B /1000.00/

R /50.00/;

positive variables x(i);

free variable z;

equations obj, c1, b1;

obj.. z =e= sum(i, sum(j, sigma(i,j)*x(i)*x(j)));

b1.. sum(i, x(i)) =l= B;

c1.. sum(i, rbar(i)*x(i)) =g= R;

6

model example /all/;

solve example minimizing z using nlp;

display x.l;

Output File

Here is the GAMS output file for opti.gms. Note that the output file has a *.lst extension.

File example.lst:
GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 1

General Algebraic Modeling System

Compilation

1 sets i/1*3/;

2 alias (i,j);

3

4 parameter rbar(i)

5 /

6 1 0.0260023

7 2 0.008100891

8 3 0.073774971

9 /;

10

11 table sigma(i,i)

12 1 2 3

13 1 0.017087987 0.003298885 0.001224849

14 2 0.003298885 0.005900944 0.004488271

15 3 0.001224849 0.004488271 0.063000818

16 ;

17

18 scalar B /1000.00/

19 R /50.00/;

20

21 positive variables x(i)

22 free variable z

23

24 equations obj, c1, b1;

25

26 obj.. z =e= sum(i, sum(j, sigma(i,j)*x(i)*x(j)));

27 b1.. sum(i, x(i)) =l= B;

28 c1.. sum(i, rbar(i)*x(i)) =g= R;

29

30 model example /all/;

31

32 solve example minimizing z using nlp;

33

34 display x.l;

COMPILATION TIME = 0.000 SECONDS 0.7 Mb WIN198-120

GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 2

General Algebraic Modeling System

Equation Listing SOLVE example USING NLP FROM LINE 32

---- obj =E=

obj.. (0)*x(1) + (0)*x(2) + (0)*x(3) + z =E= 0 ; (LHS = 0)

---- c1 =G=

c1.. 0.026*x(1) + 0.0081*x(2) + 0.0738*x(3) =G= 50 ; (LHS = 0, INFES = 50 ***)

---- b1 =L=

9

b1.. x(1) + x(2) + x(3) =L= 1000 ; (LHS = 0)

7

GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 3

General Algebraic Modeling System

Column Listing SOLVE example USING NLP FROM LINE 32

---- x

x(1)

(.LO, .L, .UP = 0, 0, +INF)

(0) obj

0.026 c1

1 b1

x(2)

(.LO, .L, .UP = 0, 0, +INF)

(0) obj

0.0081 c1

1 b1

x(3)

(.LO, .L, .UP = 0, 0, +INF)

(0) obj

0.0738 c1

1 b1

---- z

z

(.LO, .L, .UP = -INF, 0, +INF)

1 obj

GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 4

General Algebraic Modeling System

Model Statistics SOLVE example USING NLP FROM LINE 32

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 3

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 4

NON ZERO ELEMENTS 10 NON LINEAR N-Z 3

DERIVATIVE POOL 11 CONSTANT POOL 14

CODE LENGTH 153

GENERATION TIME = 0.130 SECONDS 1.9 Mb WIN198-120

EXECUTION TIME = 0.130 SECONDS 1.9 Mb WIN198-120

GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 5

General Algebraic Modeling System

S O L V E S U M M A R Y

MODEL example OBJECTIVE z

TYPE NLP DIRECTION MINIMIZE

SOLVER CONOPT FROM LINE 32

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 2 LOCALLY OPTIMAL

**** OBJECTIVE VALUE 20742.0766

10

RESOURCE USAGE, LIMIT 0.170 1000.000

ITERATION COUNT, LIMIT 4 10000

EVALUATION ERRORS 0 0

C O N O P T Windows NT/95/98 version 2.043F-007-043

Copyright (C) ARKI Consulting and Development A/S

Bagsvaerdvej 246 A

DK-2880 Bagsvaerd, Denmark

Using default control program.

** Optimal solution. There are no superbasic variables.

CONOPT time Total 0.070 seconds

of which: Function evaluations 0.000 = 0.0

Derivative evaluations 0.000 = 0.0

Work length = 0.05 Mbytes

8

Estimate = 0.05 Mbytes

Max used = 0.04 Mbytes

LOWER LEVEL UPPER MARGINAL

---- EQU obj . . . 1.000

---- EQU c1 50.000 50.000 +INF 968.646

---- EQU b1 -INF 1000.000 1000.000 -6.948

---- VAR x

LOWER LEVEL UPPER MARGINAL

1 . 497.669 +INF .

2 . . +INF 6.894

3 . 502.331 +INF .

LOWER LEVEL UPPER MARGINAL

---- VAR z -INF 20742.077 +INF .

GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 6

General Algebraic Modeling System

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

0 ERRORS

GAMS Rev 120 Windows NT/95/98 01/14/02 07:07:54 PAGE 7

General Algebraic Modeling System

E x e c u t i o n

---- 34 VARIABLE x.L

1 497.669, 3 502.331

EXECUTION TIME = 0.040 SECONDS 1.4 Mb WIN198-120

From the optimization problem solution, our optimal decision is to invest 497.669 Dollars in
IBM stocks, and 502.331 Dollars is SEHI stocks. Observe that this result is different from the one
obtained by MATLAB as discussed earlier.

References

1. Notes from in ISYE-6673.
2. http://www.isye.gatech.edu/∼sahmed.
3. http://www.me.uvic.ca/∼zdong/courses/mech620/matlab tutorials.
4. http://www.mathworks.com/products/optimization/

9

