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The Fault Tolerant Distributed Data Caching for Mobile
Devices using LDPC Codes
∗

As the use of mobile data has increased tremendously and become common place, the overhead of base stations in
communicating mobile data has reached enormous levels overlaoding the underlying infrastructure. In order to reduce
this overhead, inter-cell communication between the devices of the same cell can be performed with the distributed data
caching. Nevertheless, due to departure of old nodes and arrival of the new nodes, the data stored in the outgoing node
may lead to permenant data loss in a distributed data caching context. In this paper, we propose and analyze the use of
LDPC codes as a viable fault tolerance method. We compare the LDPC codes with the well known other techniques such
as replication and Reed-Solomon coding within the context of distributed data caching.

Introduction

Device to device (D2D) communication can be used as an alternative way for retrieving data
from a base station (Wang and Golrezai; Han and Ansari 2014). In this communication model,
devices can communicate directly with each other without any base station intervention. D2D
technology not only decreases the requirement of communication between the base station and
nodes, but also reduces the access time for retrieving popular content. In this way, whenever a
mobile device wants to retrieve content, it should first request it from the nearby devices through
D2D communication. Only in the case of content unavailability, nodes request the content from
the base station. On the other hand, if the content is available in the nearby devices, the content
can be accessed without contacting the base station. The requester device can also cache the
content for further requests coming from other nodes in the same cell at the expense of using
some space in their local storage.

In the context of D2D communication, the data stored in the device can be considered lost
whenever that device leaves the cell. One way to prevent this undesirable situation is the addition
of controlled redundancy to the cached content. This redundancy can be obtained by using several
methods such as replication (copy), MDS erasure codes, locally repairable codes, etc.

Several fault tolerant schemes for the distributed data caching have been considered in recent
studies (Pääkkönen, Hollanti, and Tirkkonen 2015; Pedersen et al. 2016). The use of regenerating
codes as a fault tolerance mechanism for distributed caching is proposed in (Pääkkönen, Hollanti,
and Tirkkonen 2015). The immediate repair of the lost content is considered. The theoretical
results indicate that the coded caching reduces the communication cost only if the popularity of
the lost data is in a specific range (Pääkkönen, Hollanti, and Tirkkonen 2015).

It has been stated that using "lazy repair" method can decrease the cost of node repair compared
to the case where the repairs are employed only by BS in (Pedersen et al. 2016). Further, they
showed that MDS codes repair the content less costly than the other well-known techniques which
are tailor-made for node repair process in distributed storage systems.

∗
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In this paper, we consider the use of Low Density Parity Check (LDPC) codes as a fault
tolerance method for distributed data caching. LDPC codes are compared with other methods
with various code rates and redundancy levels. LDPC codes are linear block codes and they
are first proposed by Galleger in his Ph.D. thesis (Gallager 1963). The parity check matrix
of these codes has a sparse structure. These codes are usually expressed by bipartite graphs
consisting of two types of nodes check nodes and variable nodes. The variable nodes contain
original data whereas the check nodes contain the sum of the selected variable nodes according
to the corresponding row of the parity check matrix. These codes are essentially constructed to
sustain reliable communication on a erroneous channel. Then, they have found new application
areas such as a redundancy method for distributed storage systems in different studies (Plank and
Thomason 2003; Gaidioz, Koblitz, and Santos 2007; Wei et al. 2014; Yongmei, Fengmin, and
Cher 2015).

In erasure codes, k symbols are coded and extenden to n symbols. So, From a distributed
storage perspective, the distinctive feature of LDPC codes is that increasing n and k while keeping
the ratio constant does not affect the decoding complexity (Yongmei, Fengmin, and Cher 2015).
In that respect, these codes are suitable for dynamic systems where the number of incoming and
outgoing nodes are not predictable as in the cellular networks. Thus, by exploiting this feature,
the number of n and k can be changed in accordance with network size. (Same way, how about
fountain codes? They can also scale like that with their generator matrices?)

(It is true, but adding these codes’ results will be exhausting in this phase, how about
considering them in the next studies maybe on "the code parameter switching". )

In distributed storage systems, node repair becomes infeasible when there are insufficient
number of symbols for the repair. Fortunately, in the cellular networks with the help of the base
station node repair could still be possible even if there exist insufficient data within the operating
cell. The node repair in LDPC code can be performed in multiple ways (Yongmei, Fengmin, and
Cher 2015). The first approach is based on repairing symbols one by one while the other approach
considers repairing multiple symbols all at the same time. In essence, both of the methods utilize
the belief propagation decoding approach. The main obstacle of this approach is that the decoding
process fails if any of the required symbols is not stored in available nodes. This obstacle can be
prevented through the assitance of the base station by sacrificing the communication cost.

In this paper, we investigate the encoding and node repair cost of the distributed data caching
system for mobile networks when LDPC codes are used as a redundancy scheme. Furthermore,
we compare the performance of the two different node repair techniques of LDPC codes. The
cost is defined regarding time; the number of symbols downloaded from nodes and base station.
We find out that increasing the code rate reduces the success probability of the multiple symbol
repair method whereas increases the communication cost. Moreover, LDPC codes are compared
with Reed Solomon code and 2-way-replication techniques through Monte Carlo simulations.

LDPC Repair Process

In this study, different repair approaches are proposed for repair processes. Different from the
classical distributed storge systems, available required symbols are retrieved from the available
helper nodes in the cell, and the remaining required symbols are retrieved from the base station
for both methods in these approaches. (Is this some differentiating scheme compared to these
studies? In other words, do they not perform the repair operations the same way we do it here?
Need to look at the paper in detail.)
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Yes, we have different repair techniques since we have an alternative way of communication
using BS. On the other hand, the use of recovery equations idea and the Equation (1) used in
Multiple repairs are the same .

Multiple nodes may leave the cell in a δ period, so the symbols stored in the leaving nodes
should be repaired. In the first approach, the lost symbols are repaired one by one (Wei et al. 2014).
In the second approach, the lost symbols are repaired all at once (Yongmei, Fengmin, and Cher
2015).

As a strategy, we prefer the multiple repair method whenever there are more than one failure.
If our attempt for multiple and simultaneous recovery fails, the method of single repair at a time
is employed. In the following subsections, these methods are explained by emphasizing the
differences due to different settings of the cellular networks.

Single Repair

This repair method is based on the recovery equations. The recovery equations are determined as
follows. A row of the parity check matrix is selected where the column corresponding to the lost
symbol value is one. Preferably, the row with the minimum row weight is chosen in order to use
low bandwidth. Then, the symbols corresponding to ones in the row except the lost symbol are
downloaded from the related nodes. Since the nodes store multiple symbols, the departure of a
single node may lead to the loss of multiple symbols at the same time. Therefore, in this setting,
the other symbols may also be lost in the recovery equation that is used to repair the lost symbol.
Thus, in this study, the recovery equation is constructed according to using the recovery equation
having either minimum term or the requiring minimum BS communication. In the single repair
approach lost symbols are repaired one by one using the related recovery equations.

(But we assumed single node departure (loss). Do you mean that the departed node leads to
only and only one symbol loss in a given recovery equation? and What if we cannot find any row
with this constraint? - Use BS?)

Maybe the expression "Single Repair" leads to a misunderstanding. Nodes can store multiple
symbols. No, in this setting multiple symbols are repaired using recovery equations e.g.
R1 = S4 + S5 + S7 for S1, R3 for S9, etc. Assume that R1 is used for repairing S1; however, S5 is
a symbol is also lost because of some other nodes’ departure.

We propose two different single repair algorithms. The first one uses a greedy approach
while the other uses a randomized approach to provide lower BS communication. Initially, both
algorithms attempt to repair lost symbols without the base station as much as possible. But,
algorithms differ in the way of repairing lost symbols involving base station interaction.

In the first algorithm, when neither of the lost symbols is repaired using a recovery equation
that do not required the base station communication, one of the lost symbols is repaired which
requires the minimum base station contact. In this case, this symbol can be used as a helper
symbol in the further repairs. So, if at time t, there is no repair without the base station intervention
can be performed, the next repair may be realized without using the base station at time t + 1
using the previously repaired symbol as the helper node. Every lost symbol is first attempted to
be repaired without using any base station communication.

(But How are we going to judiciously choose that lost symbol to make sure it will help others?
Perhaps an algorithm?)

(I elaborate the operations in Algorithm 1 and also in below, the explanation of the Algorithm
1)
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The first algorithm is given in Algorithm (1). It presents a method to repair the lost symbols
one by one. This algorithm uses a set called L for storing the lost symbols. The algorithm starts
with generating recovery equations using parity check matrix for all of the lost symbols then these
recovery equations are represented by two sets called R1 and R2 according to whether an equation
contains any lost symbol or not. Namely, R1 stores the equation set that does not involve any
BS communication while R2 stores equations requiring BS communication. An equation in R2
consists of the indices of the symbols contained in the equation. In this algorithm, R2 contains
at most one equation for any lost symbol. The sets R1 and R2 have an increasing order with
regarding the number of symbols involved in the equations and the number of symbols required
to be gathered from the base station respectively.

Moreover, the algorithm uses a function F (X) which is defined for mapping a recovery
equation to the lost symbol that it repairs. The domain of this function is the set of recovery
equations, and the codomain is the set of the lost symbols. The algorithm starts repairing symbols
using R1 set. In this phase, when a lost symbol is repaired it removed from lost symbols set L as
well as equations in R1 and R2 where takes part as a term. These operations are repeated until
no equation left in R1. After this phase, the lost symbols are repaired using the equations in R2.
Here equations may have also lost symbols. These symbols are gathered from BS. The second
phase of the algorithm consists of these operations. As far as, there is any symbol in L, the next
lowest BS communication required equation is used from the R2 set. Update operations over the
sets R1 and R2 is realized with preserving their increasing order property.

Actually, the order of using recovery equations affects the number of retrieving symbols from
the base station communication. Algorithm (1) represents a greedy approach by ordering the
equations respect to the number of lost symbols which they contain. However, this approach
is not guaranteed the optimal solution for the minimum overall base station communication.
The problem of finding the order of recovery equations which results the minimum base station
communication is an NP-Hard problem. This problem is similar to the Travelling Salesperson
Problem. The minimum cost path should be found as in the TSP, but here the edge weights change
dynamically. The more detailed description of the problem can be found in Appendix A.

To further reduce the BS communication, we propose Algorithm (2) using a randomized
approach. The first phases of the both algorithms are the same. The first phase of the Algorithm

(1) and Algorithm (2) are the same. After this phase, in Algorithm (2), a new set called
4

R2 is

constructed.
4

R2 contains φ equation tuples having low score values among set R2. Each tuple
is consisted of t equations. These tuples have costs according to their BS communication need.
Generating of these tuples is conducted using a genetic algorithm. Tuples having two equations
ara generated at first and then using these tuples, tuples having four equations are constructed,
this process continues up to generating tuples having t equations.

Initially, R2 contains the same equations as in the Algorithm (1). At the beginning of the

iteration, R2 is copied to χ. The tuples in
4

R2 has an increasing order. The algorithm is continued
as follows.

A random integer, index, is generated proportionally to the score of equations in R2

from the interval [1, |R2 | − t]. Then, one tuple is selected from
4

R2 with a probality that is
inverse proportional to their scores. The scores of the tuples are updated on each iteration as
scorest0+R2 − R2 \ {R2[index], R2[index + 1], ..., R2[index + t]}. On each iteration, equations

{χ[index], χ[index+1], ..., χ[index+ t]} is removed and a selected tuple
4

R2[index ′...index ′+ t]
takes their place. If the score of χ is smaller then the score of R2, R2 is updated with the content
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Algorithm 1 Single Repair Algorithm V1
input L,R1,R2

output score, C
1: function FirstPhase(L, R1, R2)
2: while R1 , ∅ do
3: R← R1[1]
4: repair node F (R) using R
5: L ← L \ F (R)
6: for each r ∈ R1 ∧ F (R) ∈ r do
7: r ← r \ F (R)
8: end for
9: for each r ∈ R∈ ∧ F (R) ∈ r do
10: r ← r \ F (R)
11: if r ∩ L = ∅ then
12: R2 ← R2 \ r
13: R1 ← R1 ∪ r
14: end if
15: end for
16: R1 ← R1 \ R
17: end while
18: function SecondPhase(L, R2)
19: while L , ∅ do
20: R← R2[1]
21: download R ∩ L from BS
22: score = score + |R ∩ L|
23: C = C ∪ score
24: repair F (R)
25: for each r ∈ R2 do
26: r ← r \ {F (R) ∪ {L ∩ R}}
27: end for
28: end while
29: return score =0
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of χ. In every iteration the score of the χ is tried to be decreased. After maxIter iterations the
first |L | equations are used for repairing symbols in L.

Algorithm 2 Single Repair Algorithm V2

input L, R1, R2,
4

R2, maxIter , t

1: function SingleRepairV2(L, R1, R2, t)
2: bestScore ← FirstPhase(L, R1, R2) ikinci aşamada çalıştırmadan maliyeti ne kedar

hesaplıyacağız

3: construct
4

R2 as containing best φ t-mers
4: while it < maxIter do
5: χ ← R2
6: index ← generate a biased random integer from the interval [1, |R2 | − t] proportionally

to the scores
7: index ′← generate a biased random integer from the interval [1, |

4

R2 |] inverse proportion-
ally to the scores

8: χ[index...index + t] ←
4

R2[index ′...index ′ + t] \ χ[index...index + t]
9: newScore← score(χ)
10: if newScore<bestScore then
11: bestScore← newScore
12: R2 ← χ

13:
4

R2 ←
4

R2 \
4

R2[index ′]
14: end if
15: it ← it + 1
16: end while
17: return R2 =0

We may add/try two other algorithms. The third can be based on totally genetic algorithm i.e.
t = |L|, The fourth one, we may modify Algorithm 2 as an adaptive version of it as follows: t is
started with a small value and in every iteration if it succeeds (if if condisiton is held in line 10), t
is increased.

(I assume above expression is not complete? - Is this what has been proposed in Wei, 2014 or
in Yongmei,2015?, or something we are proposing?)

( Like I said in the e-mail, initially, it was only AlgorithmV1. Now, both of the algorithms are
added. )

Multiple Repair

In this repair method, many lost symbols can be repaired at once. This method is based on the
following equation proposed by Yongmei, Fengmin, and Cher 2015:

dlost = h−1gdrequired (1)

In the Equaton 1, dlost represents the vector of the lost symbols, drequired represents the
symbols required from the helper nodes, g stands for the generator matrix of the helper symbols
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and h is the sub matrix of the parity check matrix which contain one(s) in the diagonal element of
the columns of the lost symbols and this matrix has to be invertible.

(I think we may need to put more information here.)
(Exactly, the degraded :) performance of multiple repair was detained me from completing

the section. I was searching different ways to improve its communication cost. Maybe array
LDPC codes will be helpful.)

Simulation Settings
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Figure 1: Simulation Results (What does it mean to download 0.2 symbols from the BS? Shouldn’t it be
an integer? Do you mean average? - Also should we include other modern codes? such as MSR, MBR,
cooperative versions? LRCs?)

(For the comment in the caption - 0.2 is the value the average number of symbols downloaded
from BS for repairing only one symbol. For example, we can get 8 symbols from the other nodes
and 1 symbol from the BS for repairing one symbol. - Also should we include other modern
codes? such as MSR, MBR, cooperative versions? LRCs? -Actually, it would be better. But, I
guess it will be very time consuming. In case of adding these codes extends the scope of the
paper. In this case this study may be turned into a journal paper, of course if you agree :) )
Initially, a file of F bytes is considered to be cached among some storage nodes in the cell. The
file is partitioned into stripes and each stripe includes k packets, called symbols of size 1 byte and
these packets are encoded into n coded symbols such that the code rate is k

n . Then the encoded
data is distributed into m nodes in the cell at an equal rate so that these m nodes are called as
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storage nodes. This process is repeated for all stripes. All this encoded data of this raw F bytes is
stored in the base station in the cell. There are also empty nodes that have no data in the cell. We
assume that each new node arriving in the cell is also an empty node.

Each storage node stores exactly the same number of bytes with each other (Pedersen et al.,
2016). In other words, no residual data is used in this system model.

Arrival-Departure Model

Nodes arrive into the cell at rate λ (arrival rate) according to a Poisson process with independent
and identically distributed (i.i.d.) exponential random inter-arrival times given by the probability
density function (pdf)

fX (x) = λe−λx (2)

and similarly, nodes leave the cell at rate µ (departure rate) with i.i.d. exponential random
inter-departure times given by the pdf

fY (y) = µe−µy (3)

(This also looked incomplete. I filled the empty spots a bit.)
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Figure 2: Number of Symbols Downloaded from Nodes for Repairing One Symbol

Example Scenario

• M/M/∞ model

• arrival rate

• departure rate

• lazy repair

• 30/42 (LDPC için)

– WC = 4
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Figure 3: Number of symbols downloaded from Base Station for Repairing One Symbol
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Figure 4: Elapsed Time for Repairing One Symbol

– WR = 14
– n = 42 (low-density’i korumak için 3 katı aldım)
– initial storage node sayısı = 7
– toplam başlangıç node sayısı = 42
– bu durumda H matrisi boyutu = 12x42
– bu durumda G matrisi boyutu = 30x42
– her stripe içinde node başına 6 sembol düşüyor

• 120/180 (LDPC için)

– WC = 20
– WR = 60
– n = 180 (low-density’i korumak için 3 katı aldım)
– initial storage node sayısı = 10
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– toplam başlangıç node sayısı = 50

– bu durumda H matrisi boyutu = 60x180

– bu durumda G matrisi boyutu = 120x180

– her stripe içinde node başına 18 sembol düşüyor

• 8/28 (LDPC için)

– WC = 4

– WR = 14

– n = 28 (low-density’i korumak için 3 katı aldım)

– initial storage node sayısı = 7

– toplam başlangıç node sayısı = 56

– bu durumda H matrisi boyutu = 8 x 28

– bu durumda G matrisi boyutu = 20x28

– her stripe içinde node başına 4 sembol düşüyor

Appendix A.

Let us assume that we have 8 different recovery equations, {r1, r2, ..., r8}, in total for repairing the
lost symbols in L. We can use any sequence for repairing symbols. But, the problem is finding
sequence having the minimum sequence. This problem can be represented on a graph given in
the Fig. (5). The equations can be represented as vertices and the scores can be represented in
edge weights. Since no restriction exists on which equation to start with, a redundant node named
as n is added which is adjacent to each equation. Now, the problem is turned into a dynamic
travelling salesperson problem: To find a smallest cost path starting from and ending in node
n. In this new problem, at the beginning the edge weights outgoing from node n is known. The
other edge’s weight can be changed if any node adjacent to the edge is travelled. In other words,
the weight of the edge may be changed whenever a node adjacent to the edge is travelled. Or
this problem can be seen as a hard decision decoding using minimum symbol without any ripple
restriction. (dynamic weighted set cover) More generally, the problem is finding a minimum
cost path on a set of recovery equations where edge costs are can be changed. Moreover, in this
problem travelling at most L vertices is sufficient. Denote that after travelling at most L vertices,
the weight of edges adjacent to unvisited vertices becomes zero.
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Figure 5: A representative graph.
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