Minimum Distortion Variance Concatenated Block Codes for Embedded Source Transmission

Suayb S. ARSLAN Quantum Corporation

International Conference on Computing, Networking and Communications (ICNC), Feb 6, 2014, Honolulu, Hawaii/USA.

Outline

- Source quality assessment basics
- Progressive source compression
- Unequal Protection Schemes:
 - Conventional Schemes.
 - Previous work: Concatenated Block Coding
- Few results and issues about the previous work
- Description of the extension scheme (proposed)
 - Optimization of parameters
- Numerical results

Source quality assessment Basics: Image compression

Given two images I and I' (original and the noisy version), the distortion will be measured by Mean Square Error (MSE):

$$MSE = \frac{1}{L_x \times L_y} \sum_{y=1}^{L_x} \sum_{x=1}^{L_y} \left[I(x, y) - I'(x, y) \right]^2$$

where L_x and L_y are dimensions of the image.

Peak Signal to Noise Ratio (PSNR in dB) is defined to be

$$PSNR = 10 \times \log_{10} \left(\frac{I_{max}^2}{MSE} \right)$$

where I_{max} is the maximum possible intensity value of the image.

- For monochromatic gray scale image: $I_{max} = 255$
- Lower MSE (larger PSNR) means better image quality.
- "Source rate" means the average number of bits spent per pixel (bpp).
 For a given PSNR value, the lower the source rate is, the better the compression will be.

SPIHT Encoded Bit Stream

Ex: SPIHT image compression algorithm [1]. 4% gives you only a brief description of the source.

[1] A. Said and W. A. Pearlman, "A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees," *IEEE Trans. on Circuits and Systems for Video Tech.*, vol. 6, pp.243-250, June 1996.

SPIHT Encoded Bit Stream

20% is good enough to say what the picture looks like.

SPIHT Encoded Bit Stream

At 40%, it begins to refine the image.

SPIHT Encoded Bit Stream

At 100%, it gives more refinement but no major difference from 40%.

- We consider progressive type of encoders.
 - Embedded image encoders: EZW, SPIHT, JPEG2000 etc.
 - Image compression using singular value decomposition (SVD).
- Result: Very sensitive to bit errors.
- Protection and performance improvement is achieved by error correction coding.
- Way to go: Unequal error protection (UEP) is beneficial for progressively encoded sources. This can be provided by several known techniques.
- □ <u>We consider a concatenated coded scheme</u>.

Unequal Error Protection Schemes: REVIEW

- *FixedInfo*, single channel code rate for all the packets.
- *FixedCoded*, single channel code rate for all the packets.
- *FixedInfo & FixedCoded*, different channel code rates for each packet.
- Error Correction Codes include:
 - Conventional Block Codes (BCH, Golay, etc),
 - Rate-Compatible Punctured Convolutional (RCPC) Codes,
 - Rate-Compatible (RC) Turbo codes, RC-LDPC codes
 - Reed Solomon (RS) codes.

Concatenated Block Coding for embedded bit stream transmissions

Find the number of source blocks *M*, the rate of channel codes based on a bit budget constraint (Transmission rate) and a target error rate using <u>minimum average distortion</u> criterion.

Few results...

Use 512 X 512 Lena Image

RCPC codes with rates:

 $C = \{8/9, 4/5, 2/3, 4/7, 1/2, 4/9, 2/5, 4/11, 1/3, 4/13, 2/7, 4/15, 1/4\}$

 $\varepsilon_0 = 0.1$ and transmission rate (\mathbf{r}_{tr}) = 0.3bpp (0.3 X 512 X 512 = 79643 bits)

М	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄	r ₅	PSNR (dB)
1	1/4	-	-	-	-	20.44
2	2/3	1/3	-	-	-	28.45
3	8/9	4/5	4/13	-	-	28.71
4	8/9	8/9	4/5	1/3	-	28.79
5	1	8/9	8/9	4/5	1/3	28.75

Observations

- In an optimal setting, this coding scheme results in four or five source blocks.
- Number of reconstruction levels is five or six.
- Result: User dissatisfaction due to large quality fluctuations.
- We consider a broadcast scenario.
 - One server, multiple receivers with varying channel conditions.
- Minimum average distortion.
 - Sufficient for point-to-point communication.
 - Minimum average does not imply minimum variance.

Result: User dissatisfaction due to unfair service quality.

Extension System and Optimization

- M codewords. Each information block is chopped.
- Number of reconstruction levels: $\sum_{l=1}^{M} m_l + 1$
- This extensions increases the redundancy due to CRC.
 - Less space for source bits:

$$\sum_{l=1}^{M} \mathcal{I}_l - (m_l - 1)N_r \le \sum_{l=1}^{M} \mathcal{I}_l$$

Extension System and Optimization

- Original Problem: A code allocation policy π allocates the channel code $c_{\pi}^{(i)} \in \mathcal{C}$ to be used in the *i*-th stage of the algorithm.
- Let $\overline{D}_{\pi}(n)$ denote the *n*-th moment of the distortion at the receiver using policy π .
- Let N_s be the number of source samples B is the bit budget.

Minimum Average Distortion Problem:

$$\min_{\pi,\xi,\upsilon} \overline{D}_{\pi}(1) \text{ such that } r_{tr} = \frac{1}{N_s} \sum_{i=1}^M \frac{m_i \upsilon}{\prod_{j=i}^M r_{\pi}^{(j)}} \le B$$
$$\xi = \{m_1, \dots, m_M\}$$

Extension System and Optimization

Constrained Minimization of Distortion Variance:

$$\min_{\pi,\xi,\upsilon} \sigma_{\pi}^2 \text{ such that } r_{tr} = \frac{1}{N_s} \sum_{i=1}^M \frac{m_i \upsilon}{\prod_{j=i}^M r_{\pi}^{(j)}} \le B, \overline{D}_{\pi}(1) \le \gamma_D$$

$$\sigma_{\pi}^2 = \overline{D}_{\pi}(2) - \overline{D}_{\pi}^2(1)$$

Assume: σ_{π}^2 is a non-increasing function of $\overline{D}_{\pi}(1)$ using policy π Minimization of Second moment of Distortion: Set $\overline{D}_{\pi}(1) = \gamma_D$

$$\min_{\pi} \overline{D}_{\pi}(2) \text{ subject to } r_{tr} = \frac{1}{N_s} \sum_{i=1}^M \frac{m_i \upsilon}{\prod_{j=i}^M r_{\pi}^{(j)}} \le B$$

Numerical Results

We compare the following systems:

- ConMinAve: Concatenated block coding with minimum average distortion criterion. Let d* be the minimum distortion. (Original System [1])
- ConChopMinAve: Extension scheme with minimum average distortion criterion.
- ConChopMinAve: Extension scheme with minimum distortion variance criterion subject to a minimum average distortion constraint $\gamma_D \leq d^*$
- We use a 512 X 512 monochromatic images Lena and Goldhill using SPIHT and JPEG2000 compression algorithms.
- Let us set v = 850, M = 2, and use RCPC codes [1].
- A **BSC** with crossover probability $\varepsilon_0 = 0.05$.
- Our distortion metric is MSE and we present the mean MSE and MSE variance for all three systems.

[1] S. S. Arslan, P. C. Cosman and L. B. Milstein, "Concatenated Block Codes for Unequal Error Protection of Embedded Bit Streams,"Submitted to IEEE Trans. on Image Processing.

Numerical Results

Numerical Results

Let us vary v, to increase/decrease the number of reconstruction levels.
 Set M = 2.

Image	$r_{tr}(bpp)$	Results (Std. dev.)	Channel raw BER (ϵ_0)			Image	Channel raw BER (ϵ_0)	
intage		Results (Std. dev.)	0.1	0.05	0.01	mage	0.05	0.01
Lena (SPIHT)	0.25	ConMinAve	89.9	62.33	52.68		73.95	59.95
		ConChopMinVar	19.62	12.79	8.58		24.25	17.11
		Percentage decrease	78.17%	79.48%	83.71%		67.20%	71.46%
	0.5	ConMinAve	26.75	22.65	16.34	Goldhill	99.92	18.73
		ConChopMinVar	16.33	9.53	7.66	Goldmin	24.55	16.87
		Percentage decrease	38.95%	57.92%	53.12%	(JPEG2000)	75.43%	9.93%
	0.8	ConMinAve	34.77	28.99	15.11		24.55	16.87
		ConChopMinVar	16.03	4.92	2.65		9.18	17.01
		Percentage decrease	53.9%	83.03%	82.46%		73.93%	30.29%

- Dramatic improvements can be obtained while maintaining the good mean distortion characteristics.
- Similar results can be observed using RC-LDPC codes.

References

[1] A. Said and W. A. Pearlman, "A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees," *IEEE Trans. on Circuits and Systems for Video Tech.*, vol. 6, pp.243-250, June 1996.

[2] S. S. Arslan, P. C. Cosman and L. B. Milstein, "Concatenated Block Codes for Unequal Error Protection of Embedded Bit Streams,"Submitted to IEEE Trans. on Image Processing.

[3] P. G. Sherwood and K. Zeger "Progressive Image Coding for Noisy Channels," *IEEE Signal Process. Lett.*, vol. 4, No. 7, pp.189-191, July 1999.

[4] A. Nosratinia, J. Lu, and B. Aazhang, "Source-channel rate allocation for progressive transmission of image," *IEEE Trans. Communications*, vol. 51, no. 2, Feb. 2003.

[5] L. Li and M. Salehi, "Hierarchical Image Coding Matched to Unequal Error Protection Rate Compatible Punctured Convolutional Codes," *Proceedings of the IEEE International Conference on Robotics, Intelligent systems and Signal Processing*, vol.1, pp.238 - 243. Oct. 2003.

[6] B. A. Banister, B. Belzer, and T. R. Fisher, "Robust image transmission using JPEG2000 and turbo codes," *IEEE Signal Process. Lett.*, vol. 9, no. 4, pp.117-119, Apr. 2002

[7] T. Thomos, N. V. Boulgouris and M. G. Strintzis, "Wireless Image Transmission Using Turbo Codes and Optimal Unequal Error Protection," *IEEE Trans. on Image Processing*, vol. 14, No. 11, pp.1890-1901, Nov. 2005.

[8] X. Pan, A. H. Banihashemi and A. Cuhadar, "Combined Source and Channel Coding With JPEG2000 and Rate-Compatible Low-Density Parity-Check Codes," *IEEE Trans. on Signal Processing*, vol. 54, no 3, pp.1160 - 1164, March 2006.