Minimum Distortion Variance Concatenated Block Codes for Embedded Source Transmission

Suayb S. ARSLAN Quantum Corporation

International Conference on Computing, Networking and Communications (ICNC), Feb 6, 2014, Honolulu, Hawaii/USA.

Outline

- Source quality assessment basics
- Progressive source compression
- **Unequal Protection Schemes:**
	- Conventional Schemes.
	- Previous work: Concatenated Block Coding
- \blacksquare Few results and issues about the previous work
- Description of the extension scheme (proposed)
	- Optimization of parameters
- **Numerical results**

Source quality assessment Basics: Image compression

Given two images *I* and *I'* (original and the noisy version), the $\mathcal{L}_{\mathcal{A}}$ distortion will be measured by Mean Square Error (MSE):

$$
MSE = \frac{1}{L_x \times L_y} \sum_{y=1}^{L_x} \sum_{x=1}^{L_y} \left[I(x, y) - I'(x, y) \right]^2
$$

where L_x and L_y are dimensions of the image.

Peak Signal to Noise Ratio (PSNR in dB) is defined to be

$$
PSNR = 10 \times \log_{10} \left(\frac{I_{max}^2}{MSE} \right)
$$

where I_{max} is the maximum possible intensity value of the image.

- For monochromatic gray scale image: $I_{max} = 255$
- **EXA)** Lower MSE (larger PSNR) means better image quality.
- "Source rate" means the average number of bits spent per pixel (bpp). For a given PSNR value, the lower the source rate is, the better the compression will be.

SPIHT Encoded Bit Stream

Ex: SPIHT image compression algorithm [1]. 4% gives you only a brief description of the source.

[1] A. Said and W. A. Pearlman, "A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees," *IEEE Trans. on Circuits and Systems for Video Tech.,* vol. 6, pp.243-250, June 1996.

SPIHT Encoded Bit Stream

20% is good enough to say what the picture looks like. \mathbf{r}

SPIHT Encoded Bit Stream

At 40%, it begins to refine the image. $\mathcal{L}_{\mathcal{A}}$

SPIHT Encoded Bit Stream

At 100%, it gives more refinement but no major difference from 40%.

- We consider progressive type of encoders.
	- Embedded image encoders: EZW, SPIHT, JPEG2000 etc.
	- Image compression using singular value decomposition (SVD).
- Result: Very sensitive to bit errors.
- Protection and performance improvement is achieved by error correction coding.
- \Box Way to go: Unequal error protection (UEP) is beneficial for progressively encoded sources. This can be provided by several known techniques.
- □ We consider a concatenated coded scheme.

Unequal Error Protection Schemes: **REVIEW**

- *FixedInfo*, single channel code rate for all the packets.
- *FixedCoded*, single channel code rate for all the packets.
- *FixedInfo & FixedCoded*, different channel code rates for each packet.
- Error Correction Codes include:
	- Conventional Block Codes (BCH, Golay, etc),
	- Rate-Compatible Punctured Convolutional (RCPC) Codes,
	- Rate-Compatible (RC) Turbo codes, RC-LDPC codes
	- Reed Solomon (RS) codes.

Concatenated Block Coding for embedded bit stream transmissions

Find the number of source blocks *M*, the rate of channel codes based on a bit budget constraint (Transmission rate) and a target error rate using minimum average distortion criterion.

Few results…

Use 512 X 512 *Lena* Image

RCPC codes with rates:

 $C = \{8/9, 4/5, 2/3, 4/7, 1/2, 4/9, 2/5, 4/11, 1/3, 4/13, 2/7, 4/15, 1/4\}$

 $\varepsilon_0 = 0.1$ and transmission rate $(r_{tr}) = 0.3 bpp$ (0.3 X 512 X 512 = 79643 bits)

bit budget

Observations

- In an optimal setting, this coding scheme results in four or five source blocks.
- Number of reconstruction levels is five or six.
- Result: User dissatisfaction due to large quality fluctuations.
- We consider a broadcast scenario.
	- One server, multiple receivers with varying channel conditions.
- **Minimum average distortion.**
	- Sufficient for point-to-point communication.
	- Minimum average does not imply minimum variance.

Result: User dissatisfaction due to unfair service quality.

Extension System and Optimization

- M codewords. Each information block is chopped.
- Number of reconstruction levels: $\sum_{l=1}^{M} m_l + 1$
- This extensions increases the redundancy due to CRC.
	- Less space for source bits:

$$
\sum_{l=1}^{M} \mathcal{I}_l - (m_l - 1)N_r \le \sum_{l=1}^{M} \mathcal{I}_l
$$

Extension System and Optimization

- Original Problem: A code allocation policy π allocates the channel code $c_{\pi}^{(i)} \in \mathcal{C}$ to be used in the *i*-th stage of the algorithm.
- \blacksquare Let $D_{\pi}(n)$ denote the *n*-th moment of the distortion at the receiver using policy π .
- Let N_s be the number of source samples B is the bit budget.

Minimum Average Distortion Problem:

$$
\min_{\pi,\xi,v} \overline{D}_{\pi}(1) \text{ such that } r_{tr} = \frac{1}{N_s} \sum_{i=1}^{M} \frac{m_i v}{\prod_{j=i}^{M} r_{\pi}^{(j)}} \le B
$$

$$
\xi = \{m_1, \dots, m_M\}
$$

Extension System and Optimization

E Constrained Minimization of Distortion Variance:

$$
\min_{\pi,\xi,v} \sigma_{\pi}^2 \text{ such that } r_{tr} = \frac{1}{N_s} \sum_{i=1}^M \frac{m_i v}{\prod_{j=i}^M r_{\pi}^{(j)}} \le B, \overline{D}_{\pi}(1) \le \gamma_D
$$

$$
\sigma_{\pi}^2 = \overline{D}_{\pi}(2) - \overline{D}_{\pi}^2(1)
$$

Assume: σ_{π}^2 is a non-increasing function of $\overline{D}_{\pi}(1)$ using policy π Minimization of Second moment of Distortion: Set $\overline{D}_{\pi}(1) = \gamma_D$

$$
\min_{\pi} \overline{D}_{\pi}(2) \text{ subject to } r_{tr} = \frac{1}{N_s} \sum_{i=1}^{M} \frac{m_i v}{\prod_{j=i}^{M} r_{\pi}^{(j)}} \le B
$$

Numerical Results

We compare the following systems:

- *ConMinAve***:** Concatenated block coding with minimum average distortion criterion. Let *d** be the minimum distortion. (**Original System [1]**)
- *ConChopMinAve:* Extension scheme with minimum average distortion criterion.
- *ConChopMinAve:* Extension scheme with minimum distortion variance criterion subject to a minimum average distortion constraint $\gamma_D \leq d^*$
- We use a 512 X 512 monochromatic images Lena and Goldhill using SPIHT and JPEG2000 compression algorithms.
- Let us set $v = 850$, $M = 2$, and use RCPC codes [1]. $\mathcal{L}_{\mathcal{A}}$
- A **BSC** with crossover probability $\varepsilon_0 = 0.05$.
- Our distortion metric is MSE and we present the mean MSE and MSE variance for all three systems.

[1] S. S. Arslan, P. C. Cosman and L. B. Milstein, "Concatenated Block Codes for Unequal Error Protection of Embedded Bit Streams,"Submitted to IEEE Trans. on Image Processing.

Numerical Results

Numerical Results

Let us vary υ , to increase/decrease the number of reconstruction levels. Set $M = 2$.

Dramatic improvements can be obtained while maintaining \mathcal{L}_{max} the good mean distortion characteristics.

■ Similar results can be observed using RC-LDPC codes.

References

[1] A. Said and W. A. Pearlman, "A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees," *IEEE Trans. on Circuits and Systems for Video Tech.,* vol. 6, pp.243-250, June 1996.

[2] S. S. Arslan, P. C. Cosman and L. B. Milstein, "Concatenated Block Codes for Unequal Error Protection of Embedded Bit Streams,"Submitted to IEEE Trans. on Image Processing.

[3] P. G. Sherwood and K. Zeger "Progressive Image Coding for Noisy Channels," *IEEE Signal Process. Lett.,* vol. 4, No. 7, pp.189-191, July 1999.

[4] A. Nosratinia, J. Lu, and B. Aazhang, "Source-channel rate allocation for progressive transmission of image," *IEEE Trans. Communications,* vol. 51, no. 2, Feb. 2003.

[5] L. Li and M. Salehi, "Hierarchical Image Coding Matched to Unequal Error Protection Rate Compatible Punctured Convolutional Codes," *Proceedings of the IEEE International Conference on Robotics, Intelligent systems and Signal Processing,* vol.1, pp.238 - 243. Oct. 2003.

[6] B. A. Banister, B. Belzer, and T. R. Fisher, "Robust image transmission using JPEG2000 and turbo codes," *IEEE Signal Process. Lett.*, vol. 9, no. 4, pp.117-119, Apr. 2002

[7] T. Thomos, N. V. Boulgouris and M. G. Strintzis, "Wireless Image Transmission Using Turbo Codes and Optimal Unequal Error Protection," *IEEE Trans. on Image Processing,* vol. 14, No. 11, pp.1890-1901, Nov. 2005.

[8] X. Pan, A. H. Banihashemi and A. Cuhadar, "Combined Source and Channel Coding With JPEG2000 and Rate-Compatible Low-Density Parity-Check Codes," *IEEE Trans. on Signal Processing,* vol. 54, no 3, pp.1160 - 1164, March 2006.