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n recent years, sensor research has been undergoing a
quiet revolution, promising to have a significant impact
throughout society that could quite possibly dwarf pre-
vious milestones in the information revolution. MIT

Technology Review ranked wireless sensor networks that con-
sist of many tiny, low-power and cheap wireless sensors as
the number one emerging technology. Unlike PCs or the
Internet, which are designed to support all types of
applications, sensor networks are usually mission driven
and application specific (be it detection of biological
agents and toxic chemicals; environmental measure-
ment of temperature, pressure and vibration; or real-
time area video surveillance). Thus they must operate
under a set of unique constraints and requirements. For
example, in contrast to many other wireless devices
(e.g., cellular phones, PDAs, and laptops), in which
energy can be recharged from time to time, the energy

provisioned for a wireless sensor node is not expected to
be renewed throughout its mission. The limited amount of

energy available to wireless sensors has a significant impact
on all aspects of a wireless sensor network, from the amount

of information that the node can process, to the volume of
wireless communication it can carry across large distances. 
Realizing the great promise of sensor networks requires more

than a mere advance in individual technologies; it relies on many com-
ponents working together in an efficient, unattended, comprehensible, and

trustworthy manner. One of the enabling technologies for sensor networks is distributed
source coding (DSC), which refers to the compression of multiple correlated sensor out-
puts [1]–[4] that do not communicate with each other (hence distributed coding). These
sensors send their compressed outputs to a central point [e.g., the base station (BS)] for
joint decoding.
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To motivate DSC, consider a wireless video sensor
network consisting of clusters of low-cost video sensor
nodes (VSNs), an aggregation node (AN) for each
cluster, and a BS for surveillance applications. The
lower tier VSNs are used for data acquisition and pro-
cessing; the upper tier ANs are used for data fusion and
transmitting information out of the network. This type
of network is expected to operate unattended over an
extended period of time. As such, VSN and AN power
consumption cause severe system constraints; addition-
ally, traditional, one-to-many, video processing that is
routinely applied to sophisticated video encoders (e.g.,
MPEG compression) will not be suitable for use on a
VSN. This is because under the traditional broadcast
paradigm the video encoder is the computational work-
horse of the video codec; consequently, computational
complexity is dominated by the motion estimation
operation. The decoder, on the other hand, is a rela-
tively lightweight device operating in a “slave” mode to
the encoder. The severe power constraints at VSNs
thus bring about the following basic requirements: 1)
an extremely low-power and low-complexity wireless
video encoder, which is critical to prolonging the life-
time of a wireless video sensor node, and 2) a high
ratio of compression efficiency, since bit rate directly
impacts transmission power consumption at a node. 

DSC allows a many-to-one video coding paradigm
that effectively swaps encoder-decoder complexity with
respect to conventional (one-to-many) video coding,
thereby representing a fundamental conceptual shift in
video processing. Under this paradigm, the encoder at
each VSN is designed as simply and efficiently as possi-
ble, while the decoder at the BS is powerful enough to
perform joint decoding. Furthermore, each VSN can
operate independently of its neighbors; consequently, a
receiver is not needed for video processing at a VSN,
which enables the system to save a substantial amount
of hardware cost and communication (i.e., receiver)
power. In practice, depending also on the nature of the
sensor network, the VSN might still need a receiver to
take care of other operations, such as routing, control,
and synchronization, but such a receiver will be signifi-
cantly less sophisticated. 

Under this new DSC paradigm, a challenging prob-
lem is to achieve the same efficiency (e.g., joint entropy
of correlated sources) as traditional video coding, while
not requiring sensors to communicate with each other.
A moment of thought reveals that this might be possi-
ble because correlation exists among readings from
closely placed neighboring sensors and the decoder can
exploit such correlation with DSC; this is done at the
encoder with traditional video coding. As an example,
suppose we have two correlated 8-b gray-scale images
X and Y whose same location pixel values x and y are
related by x ∈ {y − 3, y − 2, y − 1, y, y + 1, y + 2,

y + 3, y + 4}. In other words, the correlation of x and
y is characterized by −3 ≤ x − y ≤ 4, or x assumes only
eight different values around y. Thus, joint coding of x

would take 3 b. But in DSC, we simply take modulo of
pixel value x with respect to eight, which also reduces
the required bits to three. Specifically, let x = 121 and
y = 119. Instead of transmitting both x and y at 8 b/p
without loss, we transmit y = 119 and x′ = x
(mod 8) = 1 in distributed coding. Consequently, x′

indexes the set that x belongs to, i.e., x ∈
{1, 9, 17, . . . , 249}, and the joint decoder picks the
element x = 121 closest to y = 119. 

The above is but one simple example showcasing the
feasibility of DSC. Slepian and Wolf [1] theoretically
showed that separate encoding (with increased com-
plexity at the joint decoder) is as efficient as joint
encoding for lossless compression. Similar results were
obtained by Wyner and Ziv [2] with regard to lossy
coding of joint Gaussian sources. Driven by applica-
tions like sensor networks, DSC has recently become a
very active research area—more than 30 years after
Slepian and Wolf laid its theoretical foundation [4]. 

A tutorial article, “Distributed Compression in a
Dense Microsensor Network” [5], appeared in IEEE
Signal Processing Magazine in 2002. Central to [5] is a
practical DSC scheme called DISCUS (distributed
source coding using syndromes) [6]. This current arti-
cle is intended as a sequel to [5] with the main aim of
covering our work on DSC and other relevant research
efforts ignited by DISCUS. 

We note that DSC is only one of the communication
layers in a network, and its interaction with the lower
communication layers, such as the transport, the net-
work, the medium access control (MAC), and the
physical layers, is crucial for exploiting the promised
gains of DSC. Issues related to cross-layer design (e.g.,
queuing management [7], resource allocation [8], call
admission control [9], and MAC [10]) are addressed in
other articles in this issue. DSC cannot be used without
proper synchronization between the nodes of a sensor
network, i.e., several assumptions are made for the
routing and scheduling algorithms and their connec-
tion to the utilized DSC scheme. In addition, com-
pared to a separate design, further gains can be
obtained by jointly designing the distributed source
codes with the underlying protocols, channel codes,
and modulation schemes. 

Many relevant results and references on DSC could
not be included in this article. We refer readers to a
longer version with more figures and tables and a com-
prehensive bibliography at http://lena.tamu.edu.

Slepian-Wolf Coding
Let {(Xi ,Y i )}∞i=1 be a sequence of independent and
identically distributed (i.i.d.) drawings of a pair of cor-
related discrete random variables X and Y . For lossless
compression with X̂ = X and Ŷ = Y after decompres-
sion, we know from Shannon’s source coding theory
[3] that a rate given by the joint entropy H (X ,Y ) of
X and Y is sufficient if we are encoding them together
[see Figure 1(a)]. For example, we can first compress

IEEE SIGNAL PROCESSING MAGAZINESEPTEMBER 2004 81



Y into H (Y ) bits per sample and based on the com-
plete knowledge of Y at both the encoder and the
decoder, we then compress X into H (X |Y ) bits per
sample. But what if X and Y must be separately
encoded for some user to reconstruct both of them? 

One simple way is to do separate coding with rate
R = H (X ) + H (Y ), which is greater than H (X ,Y )

when X and Y are correlated. In a landmark paper [1],
Slepian and Wolf showed that R = H (X ,Y ) is suffi-
cient even for separate encoding of correlated sources
[see Figure 1(b)]! The Slepian-Wolf theorem says that
the achievable region of DSC for discrete sources X
and Y is given by R1 ≥ H (X |Y ), R2 ≥ H (Y |X ) and
R1 + R2 ≥ H (X ,Y ), which is shown in Figure 2. The
proof of the Slepian-Wolf theorem is based on random
binning. Binning is a key concept in DSC and refers to
partitioning the space of all possible outcomes of a ran-
dom source into disjoint subsets or bins. Examples

explaining the binning process are given in “Slepian-
Wolf Coding Examples.” The achievability of Slepian-
Wolf coding was generalized by Cover [3] to arbitrary
ergodic processes, countably infinite alphabets, and
arbitrary number of correlated sources. 

Slepian-Wolf Coding of Two Binary Sources
Just like in Shannon’s channel coding theorem [3], the
random binning argument used in the proof of the
Slepian-Wolf theorem is asymptotic and nonconstruc-
tive. For practical Slepian-Wolf coding, we can first try
to design codes to approach the blue corner point A
with R1 + R2 = H (X |Y ) + H (Y ) = H (X ,Y ) in the
Slepian-Wolf rate region of Figure 2. This is a problem
of source coding of X with side information Y at the
decoder as depicted in Figure 3 in “Slepian-Wolf
Coding Examples.” If this can be done, then the other
corner point B of the Slepian-Wolf rate region can be
approached by swapping the roles of X and Y and all
points between these two corner points can be realized

by time sharing—for example, using
the two codes designed for the cor-
ner points 50% of the time each will
result in the mid-point C. 

Although constructive approach-
es (e.g., [12], [13]) have been pro-
posed to directly approach the
midpoint C in Figure 2 and
progress has recently been made in
practical code designs (see [14] and
references therein) that can
approach any point between A and
B due to the space limitation, we
only consider code designs for the
corner points (or source coding
with side information at the
decoder) in this article. The former
approaches are referred to as sym-
metric and the latter as asymmetric.
In asymmetric coding, our aim is to

code X at a rate that approaches H (X |Y ) based on the
conditional statistics of (or the correlation model
between) X and Y but not the specific y at the
encoder. Wyner first realized the close connection of
DSC to channel coding and suggested the use of linear
channel codes as a constructive approach for Slepian-
Wolf coding in his 1974 paper [11]. The basic idea was
to partition the space of all possible source outcomes
into disjoint bins (sets) that are the cosets of some
“good” linear channel code for the specific correlation
model (see “Slepian-Wolf Coding Examples” for exam-
ples and more detailed explanation). Consider the case
of binary symmetric sources and Hamming distance
measure, with a linear (n, k) binary block code; there
are 2n−k distinct syndromes, each indexing a bin (set)
of 2k binary words of length n. Each bin is a coset code
of the linear binary block code, which means that the
Hamming distance properties of the original linear

IEEE SIGNAL PROCESSING MAGAZINE82 SEPTEMBER 2004

▲ 1. (a) Joint encoding of X and Y . The encoders collaborate
and a rate H(X, Y ) is sufficient. (b) Distributed/separate encod-
ing of X and Y . The encoders do not collaborate. The Slepian-
Wolf theorem says that a rate H(X, Y ) is also sufficient provided
that decoding of X and Y is done jointly.

▲ 2. The Slepian-Wolf rate region for two sources.
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code are preserved in each bin. In compressing, a
sequence of n input bits is mapped into its correspon-
ding (n − k) syndrome bits, achieving a compression
ratio of n : (n − k). This approach, known as “Wyner’s

scheme” [11] for some time, was only recently used in
[6] for practical Slepian-Wolf code designs based on
conventional channel codes like block and trellis codes. 

If the correlation between X and Y can be modeled
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Slepian-Wolf Coding Examples 

1) Assume X and Y are equiprobable binary triplets with
X, Y ∈ {0, 1}3 and they differ at most in one position. (We first
start with the same example given in [5] and [6] and extend
it to more general cases later.) Then H(X) = H(Y) = 3 b.
Because the Hamming distance between X and Y is
dH(X, Y) ≤ 1, for a given Y , there are four equiprobable choic-
es of X. For example, when Y = 000, X ∈ {000, 100, 010, 001}.
Hence H(X|Y) = 2 b. For joint encoding of X and Y , three bits
are needed to convey Y and two additional bits to index the
four possible choices of X associated with Y , thus a total of
H(X, Y) = H(Y) + H(X|Y) = 5 b suffice. 

For source coding with side information at the decoder as
depicted in Figure 3, the side information Y is perfectly
known at the decoder but not at the encoder, by the
Slepian-Wolf theorem, it is still possible to send H(X|Y) = 2
b instead of H(X) = 3 b for X and decode it without loss at
the joint decoder. This can be done by first partitioning the
set of all possible outcomes of X into four bins (sets)
Z00, Z01, Z10 , and Z11 with Z00 = {000, 111}, Z01 = {001, 110},
Z10 = {010, 101} and Z11 = {011, 100} and then sending two
bits for the index s of the bin (set) Zs that X belongs to. In
forming the bins Zs’s, we make sure that each of them has
two elements with Hamming distance dH = 3. For joint
decoding with s (hence Zs) and side information Y , we pick
in bin Zs the X with dH(X, Y) ≤ 1. Unique decoding is guaran-
teed because the two elements in each bin Zs have
Hamming distance dH = 3. Thus we indeed achieve the
Slepian-Wolf limit of H(X, Y) = H(Y) + H(X|Y) = 3 + 2 = 5
bits in this example with lossless decoding. 

To cast the above example in the framework of coset
codes and syndromes [11], we form the parity-check matrix
H of rate 1/3 repetition channel code as 

H =
[

1 1 0
1 0 1

]
. (1)

Then if we think of x as a length-3 binary word, the index s
of the bin Zs is just the syndrome s = xHT associated with
all x ∈ Zs. Sending the 2-b syndrome s instead of the origi-
nal 3-b x achieves a compression ratio of 3: 2. In partition-
ing the eight x according to their syndromes into four
disjoint bins Zs, we preserve the Hamming distance proper-
ties of the repetition code in each bin Zs. This ensures the
same decoding performance for different syndromes. 

In channel coding, the set of the length three vectors x
satisfying s = xHT is called a coset code Cs of the linear
channel code C00 defined by H (s = xHT = 00 for the linear
code). It is easy to see in this example that each coset code

corresponds to a bin Zs, i.e., all the members of the bin Zs

are code words of the coset code Cs and vice versa, i.e., all
the code words of Cs also belong to Zs. The Hamming dis-
tance properties between the code words of the linear rate
1/3 repetition channel code C00 , are the same as those
between the code words of each coset code Cs . Given the
index s of the bin Zs, i.e., a specific coset code Cs , the side
information Y can indicate its closest code word in Cs , and
thus, recover X , or equivalently x, without an error. 

2) We now generalize the above example to the case
when X and Y are equiprobable (2m − 1)-bit binary sources.
Here m ≥ 3 is a positive integer. The correlation model
between X and Y is again characterized by dH(X, Y) ≤ 1.  Let
n = 2m − 1 and k = n − m, then H(X) = H(Y) = n bits,
H(X|Y) = m bits and H(X, Y) = n + m bits. Assuming that
H(Y) = n bits are spent in coding Y so that it is perfectly
known at the decoder, for Slepian-Wolf coding of X , we
enlist the help of the m × n parity-check matrix H of the
(n, k) binary Hamming channel code. When m = 3, 

H =
[ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

]
. (2)

For each n bit input x, its corresponding syndrome s = xHT

is coded using H(X|Y) = m bits, achieving the Slepian-Wolf
limit with a compression ratio of n : m for X . In doing so, we
again partition the total of 2n binary words according to
their syndromes into 2m disjoint bins (or Zs’s), indexed by
the syndrome s with each set containing 2k elements. With
this partition, all 2k code words of the linear (n, k) binary
Hamming channel code C0 are included in the bin Z0 and
the code distance properties (minimum Hamming distance
of three) is preserved in each coset code Cs. This way X , or
equivalently x, is recovered correctly. 

Again, a linear channel code with its coset codes were used
to do the binning and hence to construct a Slepian-Wolf limit
achieving source code. The reason behind the use of channel
codes is that the correlation between the source X and the
side information Y can be modeled with a virtual “correlation
channel.” The input of this “channel” is X and its output is Y.
For a received syndrome s, the decoder uses Y together with
the correlation statistics to determine which code word of the
coset code Cs was input to the “channel.” So if the linear chan-
nel code C0 is a good channel code for the “correlation chan-
nel,” then the Slepian-Wolf source code defined by the coset
codes Cs is also a good source code for this type of correlation.



by a binary channel, Wyner’s syndrome concept can be
extended to all binary linear codes, and state-of-the-art
near-capacity channel codes such as turbo and LDPC
codes [15] can be employed to approach the Slepian-
Wolf limit. A short summary on turbo and LDPC
codes is provided in “Turbo and LDPC Codes.” There
is, however, a small probability of loss in general at the
Slepian-Wolf decoder due to channel coding (zero-error
coding of correlated sources is outside the scope of this
article). In practice, the linear channel code rate and
code design in Wyner’s scheme depend on the correla-
tion model. Toy examples like those in “Slepian-Wolf
Coding Examples” are tailor-designed with correlation
models satisfying H (X ) = n bits and H (X |Y ) = n − k

bits so that binary (n, k) Hamming codes can be used
to exactly achieve the Slepian-Wolf limits. 

A more practical correlation model than those of
“Slepian-Wolf Coding Examples” is the binary symmet-
ric model, where {(Xi ,Y i )}∞i=1 is a sequence of i.i.d.
drawings of a pair of correlated binary Bernoulli(0.5)
random variables X and Y and the correlation between
X and Y is modeled by a “virtual” binary symmetric
case (BSC) with crossover probability p . In this channel
H (X |Y )=H (p)=−p log2 p−(1−p) log2(1−p). Although
this correlation model looks simple, the Slepian-Wolf
coding problem is not trivial. As the BSC is a well-stud-
ied channel model in channel coding with a number of
capacity-approaching code designs available [15],
through the close connection between Slepian-Wolf
coding and channel coding, this progress could be
exploited to design Slepian-Wolf limit approaching
codes. The first such practical designs [13], [16], [17]
borrowed concepts from channel coding, especially
turbo codes, but did not establish the more direct link
with channel coding through the syndromes and the
coset codes, as in “Slepian-Wolf Coding Examples.” A
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▲ 3. Lossless source coding with side information at the decoder
as one case of Slepian-Wolf coding.
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^

Turbo and LDPC Codes

Although Gallager discovered low-density parity-check
(LDPC) codes 40 years ago, much of the recent devel-

opments in near-capacity codes on graphs and iterative
decoding [15], ranging from turbo codes to the rediscovery
of LDPC codes only happened in the last decade. 

Turbo codes and more generally concatenated codes are
a class of near-capacity channel codes that involve concate-
nation of encoders via random interleaving in the encoder
and iterative maximum-a-posteriori (MAP) decoding, also
called Bahl-Cocke-Jelinek-Raviv (BCJR) decoding, for the
component codes in the decoder. A carefully designed con-
catenation of two or more codes performs better than each
of the component codes alone. The role of the pseudo-
random interleaver is to make the code appear random
while maintaining enough code structure to permit decod-
ing. The BCJR decoding algorithm allows exchange of infor-
mation between decoders and thus an iterative interaction
between the decoders (hence turbo), leading to near-
capacity performance. 

LDPC codes [15] are block codes, best described by their
parity-check matrix H and the associated bipartite graph.
The parity-check matrix H of a binary LDPC code has a small
number of ones (hence low density). The way these ones
are spread in H is described by the degree distribution poly-
nomials λ̃(x) and ρ̃(x), which indicate the percentage of
columns and rows of H respectively, with different
Hamming weights (number of ones). When both λ̃(x) and
ρ̃(x) have only a single term, the LDPC code is regular, oth-
erwise it is irregular. In general, an optimized irregular
LDPC code is expected to be more powerful than a regular
one of the same code word length and code rate. Given

both λ̃(x) and ρ̃(x), the code rate is exactly determined, but
there are several channel codes and thus, several H’s that
can be formed. Usually one is constructed randomly. 

The bipartite graph of an LDPC code is an equivalent rep-
resentation of the parity-check matrix H. Each column is rep-
resented with a variable or left node and each row with a
check or right node. All variable (left) nodes are put in one
column, all check (right) nodes in a parallel column and
then wherever there is an one in H, there is an edge con-
necting the corresponding variable and check node. The
bipartite graph is used in the decoding procedure, allowing
the application of the message-passing algorithm [15].
(Iterative decoding algorithms including the sum-product
algorithm, the forward/backward algorithm in speech recog-
nition and the belief propagation algorithm in artificial intel-
ligence are collectively called message-passing algorithms.)
LDPC codes are the most powerful channel codes nowadays
[15] and they can be designed via density evolution [15]. 

Both turbo and LDPC codes exhibit near-approaching
performance with reasonable complexity over most conven-
tional channels; and algorithms have been devised for the
design of very good turbo and LDPC codes. However, the
design procedure for LDPC codes is more flexible and less
complex and therefore allows faster, easier and more pre-
cise design. This has made LDPC codes the most powerful
channel codes over both conventional and unconventional
channels. But turbo and more generally concatenated codes
are still employed in many applications when short block
lengths are needed or when one of the component codes is
required to satisfy additional properties (e.g., for joint
source-channel coding).



turbo scheme with structured com-
ponent codes was used in [16] and
parity bits were sent in [13] and
[17] instead of syndrome bits as
advocated in Wyner’s scheme. Code
design that did follow Wyner’s
scheme for this problem was done
by Liveris et al. [18] with
turbo/LDPC codes, achieving per-
formance better than in [13], [16],
and [17] and very close to the
Slepian-Wolf limit H (p).

Some simulation results from
[18] are shown in Figure 4. The
horizontal axis in Figure 4 shows the
amount of correlation, i.e., lower
H (p) means higher correlation, and
the vertical axis shows the probabili-
ty of error for the decoded X . All
coding schemes in Figure 4 achieve
2:1 compression, and therefore the
Slepian-Wolf limit is shown to be 0.5
b at almost zero error probability.
The performance limit of the more
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▲ 4. Slepian-Wolf coding of binary X with side information Y at the decoder based on
turbo/LDPC codes. The rate for all codes is fixed at 1/2.
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Wyner-Ziv Coding: The Binary Symmetric Case and the Quadratic Gaussian Case 

Wyner-Ziv coding generalizes the setup of Slepian-Wolf
coding [1] in that coding of X in Figure 3 is with

respect to a fidelity criterion rather than lossless.

The Binary Symmetric Case
X and Y are binary symmetric sources, the correlation
between them is modeled as a BSC with crossover proba-
bility p and the distortion measure is the Hamming dis-
tance. We can write X = Y

⊕
E , where E is a Bernouli(p)

source. Then the rate-distortion function RE(D) for E serves
as the performance limit RX |Y (D) of lossy coding of X given
Y at both the encoder and the decoder. From [3] we have 

RX |Y (D) = RE(D) =
{

H(p) − H(D), 0 ≤ D ≤ min{p, 1 − p},
0, D > min{p, 1 − p}.

(3)

On the other hand, the Wyner-Ziv rate-distortion function in
this case is [2], [21] 

R∗
W Z(D) = l.c.e{H(p ∗ D) − H(D), (p, 0)}, 0 ≤ D ≤ p, (4)

the lower convex envelope of H(p ∗ D) − H(D) and the
point (D = p, R = 0), where p ∗ D = (1 − p)D + (1 − D)p.
For p ≤ 0.5, R∗

W Z(D) ≥ RX |Y (D) with equality only at two dis-
tortion-rate points: the zero-rate point (p, 0) and the zero-
distortion (or Slepian-Wolf) point (0, H(p)). See as depicted
later in Figure 6 for p = 0.27. Thus Wyner-Ziv coding suffers
rate loss in this binary symmetric case. When D = 0, the

Wyner-Ziv problem degenerates to the Slepian-Wolf prob-
lem with R∗

W Z(0) = RX |Y (0) = H(X|Y) = H(p). 

The Quadratic Gaussian Case
X and Y are zero mean and stationary Gaussian memory-
less sources and the distortion metric is mean-squared error
(MSE). Let the covariance matrix of X and Y be

� =
[

σ 2
X ρσXσY

ρσXσY σ 2
Y

]

with |ρ| < 1, then [2] 

R∗
W Z(D) = RX |Y (D) = 1

2
log+

[
σ 2

X (1 − ρ2)

D

]
, (5)

where log+x = max{log2x, 0}. There is no rate loss with
Wyner-Ziv coding in this quadratic Gaussian case. If Y can
be written as Y = X + Z , with independent X ∼ N(0, σ 2

X ) and
Z ∼ N(0, σ 2

Z ), then 

R∗
W Z(D) = RX |Y (D) = 1

2
log+

[
σ 2

Z(
1 + σ 2

Z /σ 2
X

)
D

]
. (6)

On the other hand, if X = Y + Z , with independent
Y ∼ N(0, σ 2

Y ) and Z ∼ N(0, σ 2
Z ), then 

R∗
W Z(D) = RX |Y (D) = 1

2
log+

(
σ 2

Z

D

)
. (7)



general Wyner-Ziv coding described in “Wyner-Ziv
Coding: The Binary Symmetric Case and the Quadratic
Gaussian Case” and the section “The Binary Symmetric
Case” is also included. The code-word length of each
Slepian-Wolf code is also given in Figure 4. It can be
seen that the higher the correlation, the lower the prob-
ability of error for a certain Slepian-Wolf code. The
more powerful the Slepian-Wolf code, the lower the
correlation needed for the code to achieve very low
probability of error. Clearly, stronger channel codes,
e.g., same family of codes with longer code word length
in Figure 4, for the BSC result in better Slepian-Wolf
codes in the binary symmetric correlation setup.

This last statement can be generalized to any corre-
lation model: if the correlation between the source out-
put X and the side information Y can be modeled
with a “virtual” correlation channel, then a good chan-
nel code over this channel can provide us with a good
Slepian-Wolf code through the syndromes and the
associated coset codes. Thus the seemingly source cod-
ing problem of Slepian-Wolf coding is actually a chan-
nel coding one and near-capacity channel codes such as
turbo and LDPC codes can be used to approach the
Slepian-Wolf limits.

Slepian-Wolf Coding of Multiple Sources
with Arbitrary Correlation
Practical Slepian-Wolf code designs for other correla-
tion models and more than two sources have appeared
recently in the literature (e.g., [19]) using powerful
turbo and LDPC codes. However, there is no system-
atic approach to general practical Slepian-Wolf code
design yet, in the sense of being able to account for
an arbitrary number of sources with nonbinary alpha-
bets and possibly with memory in the marginal source
and/or correlation statistics. Most designs do not
consider sources with memory and/or the memory in
the correlation between the sources. The only
approach taking into account correlation with memo-
ry is [20]. The lack of such results is due to the fact
that the channel coding analog to such a general
Slepian-Wolf coding problem is a channel code design
problem over channels that resemble more involved
communication channels, and thus, has not been ade-
quately studied yet.

Nevertheless, there has been a significant amount of
work, and for a number of different scenarios the avail-
able Slepian-Wolf code designs perform well. These
designs are very important, as asymmetric or symmetric
Slepian-Wolf coding plays the role of conditional or

joint entropy coding, respectively. Not only can
Slepian-Wolf coding be considered the analog to
entropy coding in classic lossless source coding but also
the extension of entropy coding to problems with side
information and/or distributed sources. In these more
general problems, near-lossless compression of a source
down to its entropy is a special case of Slepian-Wolf
coding when there is no correlation either between the
source and the side information (asymmetric setup) or
between the different sources (symmetric setup). 

So, apart from its importance as a separate problem,
when combined with quantization, Slepian-Wolf can
provide a practical approach to lossy DSC problems,
such as the Wyner-Ziv problem considered next, simi-
larly to the way quantization and entropy coding are
combined in classic lossy source coding.

Wyner-Ziv Coding
In the previous section, we focused on lossless source
coding of discrete sources with side information at the
decoder as one case of Slepian-Wolf coding. In sensor
network applications, we are often dealing with contin-
uous sources; then the problem of rate distortion with
side information at the decoder arises. The question to
ask is how many bits are needed to encode X under the
constraint that the average distortion between X and
the coded version X̂ is E {d(X ,X̂ )} ≤ D , assuming the
side information Y is available at the decoder but not
at the encoder. This problem, first considered by
Wyner and Ziv in [2], is one instance of DSC with Y
available uncoded as side information at the decoder. It
generalizes the setup of [1] in that coding of discrete X
is with respect to a fidelity criterion rather than lossless.
For both discrete and continuous alphabet cases and
general distortion metrics d(·), Wyner and Ziv [2] gave
the rate-distortion function R∗

W Z (D) for this problem.
We include in “Wyner-Ziv Coding: The Binary
Symmetric Case and the Quadratic Gaussian Case” the
Wyner-Ziv rate distortion functions for the binary sym-
metric case and the quadratic Gaussian case. 

The important thing about Wyner-Ziv coding is that
it usually suffers rate loss when compared to lossy cod-
ing of X when the side information Y is available at
both the encoder and the decoder (see the binary sym-
metric case in “Wyner-Ziv Coding: The Binary
Symmetric Case and the Quadratic Gaussian Case”).
One exception is when X and Y are jointly Gaussian
with MSE measure (the quadratic Gaussian case in
“Wyner-Ziv Coding: The Binary Symmetric Case and
the Quadratic Gaussian Case”). There is no rate loss
with Wyner-Ziv coding in this case, which is of special
interest in practice (e.g., sensor networks) because
many image and video sources can be modeled as joint-
ly Gaussian (after mean subtraction). Pradhan et al.
[22] recently extended the no rate loss condition for
Wyner-Ziv coding to X = Y + Z , where Z is inde-
pendently Gaussian but X and Y could follow more
general distributions. 
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The seemingly source coding
problem of Slepian-Wolf coding
is actually a channel coding
problem.



From an information-theoretical perspective, accord-
ing to [23], there are granular gain and boundary gain
in source coding and packing gain and shaping gain in
channel coding. Wyner-Ziv coding is foremost a source
coding (i.e., a rate-distortion) problem; one should
consider the granular gain and the boundary gain. In
addition, the side information necessitates channel cod-
ing for compression (e.g., via Wyner’s syndrome-based
binning scheme [11]), which utilizes a linear channel
code together with its coset codes. Thus, channel cod-
ing in Wyner-Ziv coding is not conventional in the
sense that there is only packing gain but no shaping
gain. One needs to establish the equivalence between
the boundary gain in source coding and the packing
gain in channel coding for Wyner-Ziv coding; this is fea-
sible because channel coding for compression in Wyner-
Ziv coding can perform conditional entropy coding to
achieve the boundary gain—the same way as entropy
coding achieves the boundary gain in classic source cod-
ing [23], [24 p. 123]. Then in Wyner-Ziv coding,
he/she can shoot for the granular gain via source cod-
ing and the boundary gain via channel coding.

From a practical viewpoint, because we are introduc-
ing loss/distortion to the source with Wyner-Ziv cod-
ing, source coding is needed to quantize X . “Main
Results in Source Coding (Quantization Theory)”
reviews main results in source coding (quantization
theory) regarding Gaussian sources. 

Usually there is still correlation remaining in the
quantized version of X and the side information Y ,
and Slepian-Wolf coding should be employed to exploit
this correlation to reduce the rate. Since Slepian-Wolf
coding is based on channel coding,
Wyner-Ziv coding is, in a nutshell, a
source-channel coding problem.
There are quantization loss due to
source coding and binning loss due
to channel coding. To reach the
Wyner-Ziv limit, one needs to
employ both source codes [e.g.,
trellis coded quantization (TCQ)]
that can achieve the granular gain
and channel codes (e.g., turbo and

LDPC codes) that can approach the Slepian-Wolf limit.
In addition, the side information Y can be used in
jointly decoding and estimating X̂ at the decoder to
help reduce the distortion d(X ,X̂ ) for nonbinary
sources, especially at low bit rates. The intuition is that
in decoding X , the joint decoder should rely more on
Y when the rate is too low to make the coded version
of X to be useful in terms of lowering the distortion.
On the other hand, when the rate is high, the coded
version of X becomes more reliable than Y so the
decoder should put more weight on the former in esti-
mating X̂ . Figure 5 depicts the block diagram of a
generic Wyner-Ziv coder. 

To illustrate the basic concepts of Wyner-Ziv coding
we consider nested lattice codes, which were intro-
duced by Zamir et al. [21] as codes that can achieve
the Wyner-Ziv limit asymptotically, for large dimen-
sions. Practical nested lattice code implementation was
first done in [25]. The coarse lattice is nested in the
fine lattice in the sense that each point of the coarse lat-
tice is also a point of the fine lattice but not vice versa.
The fine code in the nested pair plays the role of source
coding while each coset coarse code does channel cod-
ing. To encode, x is first quantized with respect to the
fine source code, resulting in quantization loss.
However, only the index identifying the bin (coset
channel code) that contains the quantized x is coded to
save rate. Using this coded index, the decoder finds in
the bin (coset code) the code word closest to the side
information y as the best estimate of x. Due to the bin-
ning process employed in nested coding, the Wyner-
Ziv decoder suffers a small probability of error. To
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For Gaussian source X ∼ N(0, σ 2
X ) with MSE distortion

metric, the rate-distortion function [3] is
RX(D) = (1/2) log+

(σ 2
X /D) and the distortion-rate function is

DX(R) = σ 2
X 2−2R. At high rate, the minimum MSE (or Lloyd-

Max) scalar quantizer, which is nonuniform, performs 4.35
dB away from DX(R) [24]; and the entropy-coded scalar
quantizer (or uniform scalar quantization followed by ideal
entropy coding) for X suffers only 1.53 dB loss with respect
to DX(R) [24]. High dimensional lattice vector quantizers

[24] can be found in dimensions 2, 4, 8, 16, and 24 that
perform 1.36, 1.16, 0.88, 0.67 and 0.50 dB away, respec-
tively, from DX(R). In addition, trellis-coded quantization
(TCQ) can be employed to implement equivalent vector
quantizers in even higher dimensions, achieving better
results. For example, TCQ can perform 0.46 dB away from
DX(R) at 1 b/s for Gaussian sources [24] and entropy-coded
TCQ can get as close as 0.2 dB to DX(R) for any source with
smooth PDF [24].

▲ 5. Block diagram of a generic Wyner-Ziv coder.
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reduce this decoding error probability, the coarse chan-
nel code has to be strong with large minimum distance
between its code words. This means that the dimen-
sionality of the coarse linear/lattice code needs to be
high. It is proven in [21] that infinite dimensional
source and channel codes are needed to reach the
Wyner-Ziv limit. This result is only asymptotical and
not practical. Implemented code designs for the binary
symmetric and the quadratic Gaussian cases are dis-
cussed next. 

The Binary Symmetric Case
Recall that in Wyner’s scheme [11] for lossless Slepian-
Wolf coding, a linear (n, k) binary block code is used.
There are 2n−k distinct syndromes, each indexing a set
(bin) of 2k binary words of length n that preserve the
Hamming distance properties of the original code. In
compressing, a sequence of n input bits is mapped into
its corresponding (n − k) syndrome bits, achieving a
compression ratio of n : (n − k).

For lossy Wyner-Ziv coding, Shamai, Verdu, and
Zamir generalized Wyner’s scheme using nested linear

binary block codes [21], [26]. According to this nested
scheme, a linear (n, k2) binary block code is again used
to partition the space of all binary words of length n
into 2n−k2 bins of 2k2 elements, each indexed by a
unique syndrome value. Out of these 2n−k2 bins only
2k1−k2 (k1 ≥ k2) are used, and the elements of the
remaining 2n−k2 − 2k1−k2 sets are “quantized’’ to the
closest, in Hamming distance sense, binary word of the
allowable 2k1−k2 × 2k2 = 2k1 ones. This “quantization’’
can be viewed as a (n, k1) binary block source code.
Then the linear (n, k2) binary block code can be con-
sidered to be a coarse channel code nested inside the
(n, k1) fine source code. 

To come close to the Wyner-Ziv limit, both codes in
the above nested scheme should be good, i.e., a good
fine source code is needed with a good coarse channel
subcode [21], [26]. Knowing how to employ good
channel codes based on Wyner’s scheme (k1 = n) [18],
Liveris et al. proposed a scheme in [27] based on con-
catenated codes, where from the constructions in [18]
the use of good channel codes is guaranteed. As for the
source code, its operation resembles that of TCQ and
hence, it is expected to be a good source code. The
scheme in [27] can come within 0.09 b from the theo-
retical limit (see Figure 6). This is the only result
reported so far for the binary Wyner-Ziv problem. 

The binary symmetric Wyner-Ziv problem does not
seem to be practical, but due to its simplicity, it provides
useful insight into the interaction between source and
channel coding. The rate loss from the Wyner-Ziv limit
in the case of binary Wyner-Ziv coding can be clearly
separated into source coding loss and channel coding

loss. For example, in Figure 6 the rate gap in
bits between the simulated points and the
Wyner-Ziv limit can be separated into source
coding rate loss and channel coding rate loss.
This helps us understand how to quantify
and combine rate losses in Wyner-Ziv coding.

In the binary setup, there is no estimation
involved as in the general scheme of Figure
5. The design process consists of two steps.
First, a good classic binary quantizer is
selected, i.e., a quantizer that can minimize
distortion D close to the distortion-rate
function of a single Bernoulli(0.5) source at
a given rate. The second step is to design a
Slepian-Wolf encoder matched to the quan-
tizer codebook. The better the matching of
the Slepian-Wolf code constraints (parity
check equations) to the quantizer codebook,
the better the performance of the decoder.
Joint source-channel decoding in Figure 5
refers to the fact that the decoder combines
the Slepian-Wolf code constraints with the
quantizer codebook to reconstruct X . This
binary design approach is very helpful in
understanding the Gaussian Wyner-Ziv code
design. 
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▲ 6. Simulated performance of the nested scheme in [27] for binary Wyner-Ziv
coding for correlation p = 0.27. The time-sharing line between the zero-rate
point (p, 0) and the Slepian-Wolf point (0, H(p)) is also shown.

Correlation p = Pr[X≠Y] = 0.27
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The Quadratic Gaussian Case
For practical code design in this case, one can first
consider lattice codes [28] and trellis-based codes [23]
that have been used for both source and channel cod-
ing in the past and focus on finding good nesting
codes among them. Following Zamir et al.’s theoreti-
cal nested lattice coding scheme, Servetto [25] pro-
posed explicit nested lattice constructions
based on similar sublattices for the high cor-
relation case. Figure 7 shows the simplest
one-dimensional (1-D) nested lattice/scalar
quantizer with N = 4 bins, where the fine
source code employs a uniform scalar quan-
tizer with stepsize q and the coarse channel
code uses a 1-D lattice code with minimum
distance dmin = Nq. The distortion consists
of two parts: the “good” distortion intro-
duced from quantization by the source code
and the “bad” distortion from decoding
error of the channel code. To reduce the
“good” distortion, it is desirable to choose a
small quantization stepsize q; on the other
hand, to limit the “bad” distor tion,
dmin = Nq should be maximized to mini-
mize the channel decoding error probability
Pe . Thus for a fixed N , there exists an opti-
mal q that minimizes the total distortion.

Research on trellis-based nested codes as a
way of realizing high-dimensional nested lat-
tice codes has just started recently. For
example, in DISCUS [6], two source codes
(scalar quantization and TCQ) and two
channel codes (scalar coset code and trellis-
based coset code [23]) are used in source-channel cod-
ing for the Wyner-Ziv problem, resulting in four
combinations. One of them (scalar quantization with
scalar coset code) is nested scalar quantization and
another one (TCQ with trellis-based coset code) can
effectively be considered as nested TCQ.

Nested lattice or TCQ constructions in [6] might be
the first approach one would attempt because source and
channel codes of about the same dimension are utilized.
However, in this setup, the coarse channel code is not
strong enough. This can be seen clearly from Figure 8,
where performance bounds [28], [29] of lattice source
and channel codes are plotted together. With nested scalar
quantization, the fine source code (scalar quantization)
leaves unexploited the maximum granular gain of only
1.53 dB [24] but the coarse channel code (scalar coset
code) suffers more than 6.5 dB loss with respect to the
capacity (with Pe = 10−6). On the other hand, Figure 8
indicates that lattice channel code at dimension 250 still
performs more than 1 dB away from the capacity.
Following the 6-dB rule, i.e., that every 6 dB correspond
to 1 b, which is approximately true for both source and
channel coding, the decibel gaps can be converted into
rate losses (bits) and then combined into a single rate loss
from the Wyner-Ziv rate-distortion function. 

Nested TCQ employed in DISCUS [6] can be
viewed as a nested lattice vector quantizer, where the
lattice source code corresponding to TCQ has a smaller
gap from the performance limit than the lattice channel
code (trellis-based coset code) of about the same
dimension does. As the dimensionality increases, lattice
source codes reach the ceiling of 1.53 dB in granular
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▲ 7. A 1-D nested lattice/uniform quantizer with four bins for the quadratic
Gaussian Wyner-Ziv problem, where Y is the side information only available at
the decoder. (a) “Good” distortion only. (b) “Good” and “bad” distortion.
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gain much faster than lattice channel codes approach
the capacity. Consequently one needs channel codes of
much higher dimension than source codes to achieve
the same loss, and the Wyner-Ziv limit should be
approached with nesting codes of different dimensional-

ities in practice. The need of strong channel codes for
Wyner-Ziv coding was also emphasized in [21]. 

This leads to the second approach [30] based on
Slepian-Wolf coded nested quantization (SWC-NQ),
i.e., nested scheme followed by a second layer of bin-
ning. At high rate, asymptotic performance bounds of
SWC-NQ similar to those in classic source coding were
established in [30], showing that ideal Slepian-Wolf
coded 1-D/two-dimensional (2-D) nested lattice
quantization performs 1.53/1.36 dB worse than the
Wyner-Ziv distortion-rate function D∗

W Z (R) with
probability almost one. Performances close to the cor-
responding theoretical limits were obtained by using 1-
D and 2-D nested lattice quantization, together with
irregular LDPC codes for Slepian-Wolf coding. 

The third practical nested approach to
Wyner-Ziv coding involves combined
source and channel coding. The main
scheme in this approach has been the com-
bination of a classic scalar quantizer (no
binning in the quantization) and a powerful
Slepian-Wolf code. The intuition that all the
binning should be left to the Slepian-Wolf
code, allows the best possible binning (a
high dimensional channel code). This limits
the performance loss of such a Wyner-Ziv
code to that from source coding alone.
Some first interesting results were given in
[17], where assuming ideal Slepian-Wolf
coding and high rate the use of classic
quantization seemed to be sufficient, lead-
ing to a similar 1.53 dB gap for classic
scalar quantization with ideal SWC. In a
more general context, this approach could
be viewed as a form of nesting with fixed
finite source code dimension and larger
channel code dimension. This generalized
context can include the turbo-trellis Wyner-
Ziv codes introduced in [31], where the
source code is a TCQ nested with a turbo
channel code. However, the scheme in [31]
can also be classified as a nested one in the
second approach. Wyner-Ziv coding based
on TCQ and LDPC codes was presented in
[32], which shows that at high rate, TCQ
with ideal Slepian-Wolf coding performs 0.2
dB away from the theoretical limit D∗

W Z (R)

with probability almost one. Practical
designs with TCQ, irregular LDPC code
based Slepian-Wolf coding and optimal esti-
mation at the decoder can perform 0.82 dB
away from D∗

W Z (R) at medium bit rates
(e.g., ≥ 1.5 b/s). With 2-D trellis-coded
vector quantization (TCVQ), the perform-
ance gap to D∗

W Z (R) is only 0.66 dB at 1.0
b/s and 0.47 dB at 3.3 b/s [32]. Thus we
are approaching the theoretical perform-
ance limit of Wyner-Ziv coding. 
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▲ 9. Performance of Gaussian Wyner-Ziv coding with scalar quantization and
Slepian-Wolf coding.
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Comparison of Different Approaches 
to the Quadratic Gaussian Case
Based on scalar quantization, Figure 9 illustrates the
performance difference between classic uniform scalar
quantization (USQ), the first approach with nested
scalar quantization (NSQ), the second with SWC-NQ,
and the third with ideal Slepian-Wolf coded uniform
scalar quantization (SWC-USQ). 

Although the last two approaches perform roughly
the same, using nesting/binning in the quantization step
in the second approach of SWC-NQ has the advantage
that even without the additional Slepian-Wolf coding
step, nested quantization (e.g.,
NSQ) alone performs better than
the third approach of SWC-USQ
without Slepian-Wolf coding,
which degenerates to just classic
quantization (e.g., USQ). At high
rate, the nested quantizer asymp-
totically becomes almost a
nonnested regular one so that

strong channel coding is guaranteed and there is a con-
stant gain in rate at the same distortion level due to nest-
ing when compared with classic quantization. The role
of Slepian-Wolf coding in both SWC-NQ and SWC-
USQ is to exploit the correlation between the quantized
source and the side information for further compression
and in SWC-NQ, as a complementary binning layer to
make the overall channel code stronger.

SWC-NQ generalizes the classic source coding
approach of quantization (Q) and entropy coding
(EC) in the sense that the quantizer performs quite
well alone and can exhibit further rate savings by
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From Classic Source Coding to Wyner-Ziv Coding

We shall start with the general case that in addition to
the correlation between X and Y , {Xi}∞

i=1 are also cor-
related (we thus implicitly assume that {Yi}∞

i=1 are correlat-
ed as well). The classic transform, quantization, and entropy
coding (T-Q-EC) paradigm for X is show in Figure 10(a).
When the side information Y is available at the decoder, we
immediately obtain the DSC paradigm in Figure 10(b). Note
that Y is not available at the encoder—the dotted lines in
Figure 10 (b) only serve as a reminder that the design of
each of the T,Q, and EC components should reflect the fact
that Y is available at the decoder. 

The equivalent encoder structure of DSC in Figure 10 (b)
is redrawn in Figure 10(c). Each component in the classic T-
Q-EC paradigm is now replaced with one that takes into
account the side information at the decoder . For example,
the first component “T with side info” could be the condi-
tional Karhunen-Loeve transform [33], which is beyond the
scope of this article. 

Assuming that “T with side information” is doing a perfect
job in the sense that it completely decorrelates X condition-
al on Y , from this point on we will assume i.i.d. X and Y
and focus on “Q with side information” and “EC with side
information” in Figure 10(c). We rename the former as
nested quantization (the latter is exactly Slepian-Wolf cod-
ing) and end up with the encoder structure of SWC-NQ for
Wyner-Ziv coding of i.i.d. sources in Figure 11. 

Nested quantization in SWC-NQ plays the role of source-
channel coding, in which the source coding component
relies on the fine code and the channel coding component
on the coarse code of the nested pair of codes. The channel
coding component is introduced to the nested quantizer
precisely because the side information Y is available at the

decoder. It effectively implements a binning scheme to take
advantage of this fact in the quantizer. Nested quantization
in Figure 11 thus corresponds to quantization in classic
source coding.

For practical lossless source coding, conventional tech-
niques (e.g., Huffman coding, arithmetic coding, Lempel-Ziv
coding, and others referred in [34]) have dominated so far.
However, if one regards lossless source coding as a special
case of Slepian-Wolf coding without side information at the
decoder, then channel coding techniques can also be used
for source coding based on syndromes (see references in
[34]). In this light, the Slepian-Wolf coding component in
Figure 11 can be viewed as the counterpart of entropy cod-
ing in classic source coding. Although the idea of using
channel codes for source coding dates back to the
Shannon-MacMillan theorem [3] and theoretical results
appeared later [34], practical turbo/LDPC code based noise-
less data compression schemes did not appear until very
recently [34], [35]. 

Starting from syndrome based approaches for entropy
coding, one can easily make the schematic connection
between entropy-coded quantization for classic source
coding and SWC-NQ for Wyner-Ziv coding, as syndrome
based approaches can also be employed for Slepian-Wolf
coding (or source coding with side information at the
decoder) in the latter case. Performance-wise, the work in
[30], [32] reveals that the performance gap of high-rate
Wyner-Ziv coding (with ideal Slepian-Wolf coding) to
D∗

W Z (R) is exactly the same as that of high-rate classic
source coding (with ideal entropy coding) to the distortion-
rate function DX (R). This interesting and important finding
is highlighted in Table 1.

Classic Source Coding Wyner-Ziv Coding
Coding Scheme Gap to DX (R) Coding Scheme Gap to D∗

WZ (R)

ECSQ [24] 1.53 dB SWC-NSQ [30] 1.53 dB 
ECLQ (2-D) [28] 1.36 dB SWC-NQ (2-D) [30] 1.36 dB 
ECTCQ [24] 0.2 dB SWC-TCQ [32] 0.2 dB

Table 1. High-rate classic source coding versus high-rate Wyner-Ziv coding.



employing a powerful Slepian-Wolf code. This con-
nection between entropy-coded quantization for clas-
sic source coding and SWC-NQ for Wyner-Ziv
coding is developed in “From Classic Source Coding
to Wyner-Ziv Coding.” 

Successive Wyner-Ziv Coding
Successive or scalable image coding made popular by
SPIHT [36] is attractive in practical applications such as
networked multimedia. For Wyner-Ziv coding, scalability
is also a desirable feature in applications that go beyond
sensor networks. Steinberg and Merhav [37] recently
extended Equitz and Cover’s work [38] on successive
refinement of information to Wyner-Ziv coding, showing
that both the doubly symmetric binary source  and the
jointly Gaussian source  are successively refinable. Cheng et
al. [39] further pointed out that the broader class of
sources that satisfy the general condition of no rate loss
[22] for Wyner-Ziv coding is also successively refinable.
Practical layered Wyner-Ziv code design for Gaussian
sources based on nested scalar quantization and multilevel
LDPC code for Slepian-Wolf coding was also presented in
[39]. Layered Wyner-Ziv coding of real video sources was
introduced in [40]. 

Applications of DSC in Sensor Networks
In the above discussions we mainly considered lossless
(Slepian-Wolf) and lossy (Wyner-Ziv) source coding
with side information only at the decoder, as most of
the work so far in DSC has been focusing on these two
problems. For any network and especially a sensor net-
work, this means that the nodes transmitting correlated
information need to cooperate in groups of two or
three so that one node provides the side information
and another one can compress its information down to
the Slepian-Wolf or the Wyner-Ziv limit. This approach
has been followed in [41]. 

As pointed out in [41], such cooperation in groups
of two and three sensor nodes means that less complex
decoding algorithms should be employed to save some
decoding processing power as the decoder is also a sen-
sor node or a data processing node of limited power
[41]. This is not a big issue as several low complexity
channel decoding algorithms have been studied in the
past years and so the decoding loss for using lower
complexity algorithms can be minimized. 

A way to change this assumption of cooperation in
small groups and the associated low complexity decod-
ing is to employ DSC schemes for multiple sources.
Several Slepian-Wolf coding approaches for multiple
sources (lossless DSC) have been discussed earlier.
However, theoretical performance limits in the more
general setting of lossy DSC for multiple sources still
remain elusive. Even Wyner-Ziv coding assumes perfect
side information at the decoder, i.e., it cannot really be
considered a two sources problem. There are scant
code designs (except [12], [14], and [42]) in the litera-
ture for the case of lossy DSC with two sources, where
the side information is also coded. 

The main issue for practical deployment of DSC is
the correlation model. Although there has been signifi-
cant effort in DSC designs for different correlation
models, in some cases even application specific [5],
[12], [41], [45], in practice it is usually hard to come
up with a joint probability mass or density function in
sensor networks, especially if there is little room for
training or little information about the current network
topology. In some applications, e.g., video surveillance
networks, the correlation statistics can be mainly a
function of the location of the sensor nodes. In case the
sensor network has a training mode option and/or can
track the varying network topology, adaptive or univer-
sal DSC that could achieve gains for time-varying cor-
relation could be used to follow the time-varying
correlation. Such universal DSC that can work well for
a variety of correlation statistics seems to be the most
appropriate approach for sensor networks, but it is still
an open and very challenging DSC problem. 

Measurement noise, which is another important issue
in sensor networks, can be addressed through DSC.
Following the Wyner-Ziv coding approach presented in
the previous section, the existence of measurement

noise, if not taken into account, causes
some mismatch between the actual
correlation between the sources and
the noiseless correlation statistics used
to do the decoding, which means
worse performance. One way to
resolve this issue is the robust code
design discussed before. But if the
noise statistics are known, even approx-
imately, they can be incorporated into
the correlation model and thus consid-
ered in the code design for DSC.
There is actually one specific DSC
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Source Coding Channel Coding

DSC [1], [2] (source coding with side Data hiding [46], [47] (channel coding
information at the decoder) with side information at the encoder)
Multiterminal source coding [4] Coding for MIMO/broadcast channels 

[21], [48]
Multiple description coding [49] Coding for multiple access channels [3]

Table 2. Dual problems in source and channel coding, where the encoder
for the source coding problem is the functional dual of the decoder for the

corresponding channel coding problem and vice versa

Slepian and Wolf theoretically
showed that separate encoding
is as efficient as joint encoding
for lossless compression.



problem, the chief executive officer (CEO) problem
[44], which considers such a scenario. In this problem
the CEO of a company employs a number of agents to
observe an event, and each of the agents provides the
CEO with his/her own (noisy) version of the event. The
agents are not allowed to convene, and the goal of the
CEO is to recover as much information as possible
about the actual event from the noisy observations
received from the agents, while minimizing the total
information rate from the agents (sum rate). The CEO
problem, hence, can account for the measurement noise
at the sensor nodes. Preliminary practical code construc-
tions for the CEO problem appeared in [12] and [42],
based on the Wyner-Ziv coding approaches, but they are
only limited to special cases. 

Another issue is the cross-layer design aspect of
DSC. DSC can be considered to be at the top of the
sensor networks protocol stack, the application
layer.Therefore, DSC sets several requirements for the
underlying layers, especially the next lower layer, the
transport layer, regarding synchronization between
packets from correlated nodes. 

DSC can also be designed to work together with the
transport layer to make retransmissions smarter. In that
sense, scalable DSC [39] seems to be the way to imple-
ment such smart retransmissions. 

One last aspect of the cross-layer design is the joint
design with the lowest layer in the protocol stack, the
physical layer. In a packet transmitted through the net-
work, the correlated compressed data can have weaker
protection than the associated header, thus saving some
overhead, because the available side information at the
decoding node can make up for this weaker protection. 

Related Topics
So far we have motivated DSC with applications to sen-
sor networks. Research on this application area [5], [12],
[41], [43] has just begun. Significant work remains to be
done to fully harness the potential of these next-genera-
tion sensor networks, as discussed in the last section.
However, DSC is also related to a number of different
source and channel coding problems in networks. 

First of all, due to the duality [22], [45] between
DSC (source coding with side information) and chan-
nel coding with side information [46], [47] (data hid-
ing/digital watermarking), there are many application
areas related to DSC (e.g., coding for the multiple
access channel [3] and the MIMO/broadcast chan-
nels [21], [48]). Table 2 summarizes different dual
problems in source and channel coding, where the
encoder for the source coding problem is the func-
tional dual of the decoder for the corresponding
channel coding problem and vice versa. We can see
that DSC only represents the starting point of a class
of related research problems. 

Furthermore, a recent theoretical result established
multiple description coding [49] as a special case of
DSC with colocated sources, with multiple descriptions

easily generated by embedded coding [36] plus
unequal error protection. Under this context, iterative
decoding approaches in DSC immediately suggest that
the same iterative (turbo) technique can be employed
for decoding multiple descriptions. Yet another new
application example of DSC is layered coding for video
streaming, where the error drifting problem in standard
MPEG-4 FGS coding can be potentially eliminated
with distributed video coding [17], [40], [43], [50]. 

Last but not least, DSC principles can be applied in
reliable communications with uncoded side informa-
tion and systematic source-channel coding [26]. The
latter includes embedding digital signals into analog
(e.g., TV) channels and communication over channels
with unknown SNRs. Applying DSC algorithms to
these real-world problems will prove to be extremely
exciting and yield the most fruitful results. 
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