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Abstract

In this short note, we present our analysis on the performance of hard bounded distance
product decoding (BDPD) of Tape’s C1 and C2 Reed-Solomon codes. BDPD consists of two
decoding stages where in the first C1 code is decoded using standard Berlekamp-Massey (BM)
algorithm. Next, C2 code is decoded based on any side information that shall be provided
from the initial C1 decoding stage. We will investigate different settings such as (1) no help
between the decoders is allowed or (2) potential error side information that can be propagated
to C2 decoder. We have also considered two types of channels wherein the first, we assumed a
completely independent byte error scenario. In the latter, we assume a Gilbert-Eliot model, a
channel model with memory to model the behaviour of error correlations that exist in magnetic
recording. We will show that different modes of operation are preferable under different error
correlation scenarios in the underlying storage channel.

1 Introduction

The extremely high reliability of modern tape drives is due to the use of product codes that
provide excellent error rate performance as well as burst error endurance at an acceptable
complexity. In order to keep scaling the tape capacity in an attempt to address big data storage
needs and archiving of future, maintaining the error-rate performance at an acceptable level
(required by INSIC Tape Technology roadmaps) is key to the success of this technology. There
are few research directions to make this success come true including but not limited to novel
tape format proposals, advanced signal processing and detection techniques and iterative multi-
dimensional error correction codes.

In this report, we shall consider the product codes that is part of the current tape systems.
Particularly important is the burst error performance of such codes under different environmental
conditions and mechanical malfunctions that may adversely affect both writing and reading.
We explore the performance of product coding using different modes of operation under both
memoryless and independent channel model as well as a simple correlated channel model. The
latter is deemed very useful when different tracks are dead leading to entire long data streams
to be useless (despite the heavy interleaving of the format). We finally provide random coding
bounds for both channel models to illustrate what performance figures are achievable (using
whatever technologies such as iterations, multi-dimensional constructions, optimal modes of
operation etc.) with different code parameter selections of the latest generations of LTO.
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Figure 1: The final (n2 × n1) product coded data block.

2 Performance Analysis

We assume the data is reshaped to be a rectangle of bytes of size k2 × k1. First, the rows of
the matrix are encoded using (n1, k1) Maximum Distance Separable (MDS)1 code called Reed-
Solomon(RS) code. Then columns of the the new row-encoded matrix (now size k2 × n1) are
encoded with (n2, k2) RS code to generate the final (n2 × n1) coded data block as shown in Fig.
1. Each symbol is typically selected to be a byte. However, our discussion in this short note is
easily extensible to symbols consisting of multiple bits larger than eight where such bits may be
interleaved.

In our model, the coded data block is assumed to go through a noisy perturbation operation
(so called a channel) such that bytes may be sensed wrong by the detectors of the system. Hence
the error detection and correction will take place to compensate for these errors. These errors
can come in different forms and patterns, either correlated or completely independent. The most
basic channel model to assume is the Discrete Memoryless Channel (DMC) in which symbols
may be in error at the output of the detector with probability q > 0 and this probability is
independent of the error probability of any other symbol in the same data block.

In our analysis we use Bounded Distance Decoding (BDD) for which a (n, k) RS code can
detect and correct up to t = b n−k

2 c errors or n− k erasures2. In the same way, BDD decoder
can work in a hybrid mode and correct a ≤ t errors and n− k− 2a erasures all at the same time.
Looking at it at another angle, BDD decoder can correct m ≤ n− k erasures and correct up to
a =

⌊
n−k−m

2

⌋
errors. In a typical hardware implementation of BDD, an input may be provided

to allow the decoder choose the mode of decoding operation (selection of a) to perform on the
received data block after the detector. Letting consecutive BDDs choose their mode based on the
information provided by the previous decoder leads to Bounded Distance Product Decoding
(BDPD). Thus depending on the mode selection of C2 decoder, different performances can be
observed at the end of the BDPD operation.

1For a given n1 and k1 code parameters such codes achieve the best minimum distance possible i.e., n1 − k1 + 1.
2The erasure is a byte error whose location is precisely known to the decoder.
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2.1 DMC and Error Correction Performance

Under DMC assumption, the decoder failure probability can be expressed in terms of bino-
mial distribution. More specifically, having more than t errors (which would lead to decoder
mulfunction) is given by the following sum

∑
i∈N

n≥i>t

(
n
i

)
qi(1− q)n−i (1)

For numerical stability, an equivalent incomplete beta function can be used. More specifically we
have the equivalence relationship

∑
i∈N

n≥i>t

(
n
i

)
qi(1− q)n−i = Iq(t + 1, n− t) (2)

where the incomplete beta function is defined to be

Ix(a, b) :=
∫ x

0
ta−1(1− t)b−1dt

/ ∫ 1

0
ta−1(1− t)b−1dt (3)

which is already implemented in MATLAB function betainc.m. Note that the beauty of the
incomplete function is that a and b in the expression need not be integers.

However, it might be cumbersome to calculate and messy and less tractable to express the
CDF using both approaches that would appear in the final analysis. Alternatively, similar to
[4], for a given (n, k) RS code and for moderately sized n with fixed nq, a Poisson distribution
approximation can be used with great accuracy. This assumption will also allow numerical
stability/precision as well in our future discussions of advanced decoding schemes. Accordingly,
we use a short hand π notation to characterize the probability of unsuccessful decoding of C1
code as follows,

πt(n, q) := ∑
i∈N

n≥i>t

e−nq(nq)i

i!
≈ Iq(t + 1, n− t). (4)

Let us consider a (n1, k1) RS codeword. When the number of byte errors in a given codeword
exceeds t1 = b n1−k1

2 c, one of the two outcomes (mulfunction) can happen at the output of the
BDD decoder (BM algorithm). The option with the overwhelming probability (denoted by PF)
happens when the decoder detects the number of errors exceeds t1 but cannot correct it and
hence declares a “decoding failure”. This probability can be shown to satisfy [6]

PF ≥ πt1(n1, q)
(

1− 1
t1!

)
(5)

The other possibility is when the decoder cannot detect the number of errors exceeds t1 which
typically happens when many symbols are affected by the error process. Thus, it continues with
the regular decoding operation and decodes the codeword to a wrong dataword. This event is
usually named “decoding error” or “miscorrection” and can be shown to be upper bounded by
PE ≤ πt(n1, q)/t! such that PE + PF = πt(n1, q) [6].

After C1 decoding ends, let Xr and Xc be the random variables representing the number of
byte errors that remains in the C1 and C2 codewords, respectively. Then, the average number
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of byte errors that the row code will have after the BDD decoding operation can be accurately
bounded3 by (need reference?)

∑
i∈N

n≥i>t1

ie−n1q(n1q)i

i!
≤ EXr .

(
1− 1

t1!

)
∑
i∈N

n≥i>t1

ie−n1q(n1q)i

i!
+

n− k + 1
t1! ∑

i∈N
n≥i>t1

e−n1q(n1q)i

i!
(6)

where E denotes the expectation operator. Note that for large enough t1, bounds converge and
we may ignore the effect of miscorrection and finally express

EXr ≈ ∑
i∈N

n≥i>t1

ie−n1q(n1q)i

i!
= n1q ∑

i∈N
n≥i>t1−1

e−n1q(n1q)i

i!
= n1qπt1−1(n1, q) (7)

using similar formulation the upper bound can also be expressed in terms of a convenient π
notation.

On the other hand, it is fair to assume that the remaining errors are also independent, so it can
be shown that the errors in the column code are distributed Poisson with rate n2qπt1−1(n1, q) i.e.,
each column symbol is in error with probability qπt1−1(n1, q). Now, let us assume that (n2, k2)
C2 decoder is able to decode t2 errors. The analysis is no different here compared to C1 with
the parameter q replaced by qπt1−1(n1, q) which is the new (reduced) symbol error rate. Using
the result in (7) with n1 and t1 being replaced with n2 and t2, we finally obtain the approximate
average number of errors that remains in the column codeword after C2 decoding as

EXc ≈ n2qπt1−1(n1, q)× πt2−1(n2, qπt1−1(n1, q)) (8)

which implies that the byte error rate is given by EXc/n2 which is

qπt1−1(n1, q)× πt2−1(n2, qπt1−1(n1, q)) (9)

again under Poisson distribution and independence assumptions.

2.2 Other modes of operation under DMC

In order to describe other modes of operation to improve performance, we need to define a
specific protocol that decoders use to create exchangable information. Let us assume a protocol
that after C1 decoding, if it fails, we label all the bytes of a C1 codeword as ”erasures” i.e., we
label the corresponding entire row in the product code as the error (in fact since the location of
errors is known they are named ”erasure”). The C2 decoder will treat these rows (symbols) as
erasures and run in erasure decoding mode. Note that in such a protocol, errors in a C2 codeword
can only happen if C1 decoder corrects mistakenly (miscorrection). In other words, the decoder
decodes it to an unintended codeword which will likely lead to symbol errors whose locations
are unknown. Assuming we reserve 2a bytes for potential miscorrections for a non-negative
integer a, then C2 BDD decoder can correct up to n2 − k2 − 2a erasures i.e., C1 decoder failures.
If there are more than n2 − k2 − 2a erasures, C2 decoder does not attempt any decoding at all.
Note that this information is provided by each C1 decoder row-wise.

3Note that exact upper bound can be calculated using weight enumeration of RS codes at the expense of complicating
the expression.
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2.2.1 Decoder Failure Probability

If we were to ignore decoder error probability for the time being, which is a pretty valid
assumption for large t1, then we can calculate the decoder failure probability using the short
hand notations we have introduced earlier. Since row C1 decoder failures are independent (due
to DMC), then, C2 decoder failure probability can be given as

πn2−k2(n2, πt1(n1, q)) (10)

which is usually the term we compare the performances of different C1-C2 pairs traditionally.
Note that there is still tiny probability that symbol errors may go though C2 decoder undetected.
We typically assume 2a bytes are reserved for a row C1 miscorrections. Assuming no miscor-
rections are left over (i.e., there are no C1 miscorrections more than a), in that case C2 decoder
failure probability would be expressed as

πn2−k2−2a(n2, πt1(n1, q)) (11)

Having more than a miscorrections would violate our assumption and make this simple
expression inaccurate which happens at most with probability

πa(n2, πt1(n1, q)/t1!) (12)

due to the fact that every miscorrection does not result in a byte error. Of course, in this treatment
we expect the probability in (12) to be small as part of our approximation.

2.2.2 Decoder Output Byte Error Probability

Expression in (10) characterizes the C2 decoder failure event not the byte error probability i.e.,
the likelihood of remaining bytes being in error after C2 decoding process is over. In order to
find this quantity, let us first find the average number of erasures (all of the bytes that are labeled
as erasures) left out after C2 decoding. In other words, the mean value of the number of erasures
(C1 encoded rows) being larger than n2 − k2 − 2a (assuming all errors are corrected due to 2a
bytes reserved) would be given by (similar rationale used to develop the expression in (7))

n2πt1(n1, q)× πn2−k2−2a−1(n2, πt1(n1, q)) (13)

Assuming Poisson distribution we can interpret this probability as a decomposition of two
probabilities using conditionals. We have

P(Symbol is erasure|C2 decoder fails)× P(C2 decoder fails) = (14)
πt1(n1, q)× πn2−k2−2a−1(n2, πt1(n1, q)) (15)

due to the failure of C1 decoding implies a labeled erasure based on our protocol. Although
symbols are labeled as erasure in case of C1 decoder failure, they may not be actually in error.
After C1 decoder, the residual byte error probability is calculated to be qπt1−1(n1, q) using
Possion assumption. Thus, using a similar logic, we can obtain

P(Symbol is error|C2 decoder fails)× P(C2 decoder fails) = (16)
qπt1−1(n1, q)×πn2−k2−2a−1(n2, πt1(n1, q)) (17)

as the remaining byte error probability after C2 decoding.
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2.3 Modes of operation under simple correlation: Gilbert-Eliot Channel

It is pretty typical that C1 decoder fails when more than t1 symbol errors occur mainly due to
correlated stream of errors that makes the entire codeword unreadable. In fact, the power of C1
is usually selected to get rid of simple random errors and long stream of correlated errors are
never the objective in the design of these codes.

On the other hand, to be able to consider a simple correlated (to extend DMC assumption)
scenario, let us assume that there is a non-zero probability qc of seeing total correlation, which
almost always results in more than t1 errors in a C1 codeword. Otherwise, the channel is
assumed to be still DMC. We observe that this model is nothing different than Gilbert-Eliot (GE)
channel model which is heavily used in many communications scenarios as well as magnetic
recording [1]. GE model is defined with four parameters: the byte error probability of good and
bad channels and the probability of changing the state of the channel either going from bad to
good (r) or from good to bad (p). According to this setting as shown in Fig. 2, qc would be the
steady state probability of the ”correlated channel” given by qc =

p
p+r . Similarly, the steady state

probability of the DMC is 1− qc. Accordingly, the mean byte erasure and error rates that C2
decoder sees can be calculated in terms of π notation, respectively, as

qc + (1− qc)πt1(n1, q) (Erasure Rate) (18)
qcqb + (1− qc)qπt1−1(n1, q) (Error Rate) (19)

We finally note that the parameters of the GE model (p, r) and hence the probability of seeing
a correlated channel in the steady state can be estimated using the known techniques [3] in
conjunction with the real traces of data.

There is one more parameter in the GE model, qb i.e., the byte error rate when the channel is
correlated. The assumption of total correlation may mean different byte error rates. However,
let us assume in our context that to mean random stream of bits. In the event of independent
bit errors, we would have qb = 1− (1− 0.5)8 ≈ 0.996 which is close to 1. This is nothing
but a random selection of any n-byte word which may cause the decoder to select a random
codeword from the codebook more frequently than raising a failure flag4. Therefore in the event
of correlation, to simplify the analysis, let us assume an external detection mechanism so that the
entire C1 codeword is labeled as erasure for the next C2 decoding stage.

With this setting in mind, C2 decoder failure can be expressed as

πn2−k2−2a(n2, qc + (1− qc)πt1(n1, q)) (20)

Similarly, using the above prescribed protocol, we can obtain the C2 decoder byte error probabil-
ity using the same calculation steps with the new correlation assumption. It can be shown to be

4This can be quantified precisely using packing bounds.

DMC
(																				)

"Correlated	Channel"
(qb)

p

1-p
1-r

r

Figure 2: Gilbert-Eliot Channel Model for C2 decoding
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of the form,(
qcqb + (1− qc)qπt1−1(n1, q)

)
× πn2−k2−2a−1(n2, qc + (1− qc)πt1(n1, q)). (21)

On the other hand, under all-error correction mode of decoders, the result given in (8) would
need to change due to the channel memory. Again, following the same reasoning of previous
expressions, the average number of symbol errors that remains after C2 decoding can be shown
to be of the form,

EXc ≈ n2(qcqb + (1− qc)qπt1−1(n1, q))× πt2−1(n2, qcqb + (1− qc)qπt1−1(n1, q)) (22)

which implies the following C2 decoder output byte error rate under Poisson assumption,

(qcqb + (1− qc)qπt1−1(n1, q))× πt2−1(n2, qcqb + (1− qc)qπt1−1(n1, q)) (23)

2.4 Random Coding Performance Bound

It has been shown in the past experiments that with enough interleaving (eight-way) that the
communication channel between C1 encoder and C2 decoder can be modeled as a discrete
symmetric memoryless channel [5]. It is quite typical to use channel capacity to predict the
ultimate performance using a product coding. However there are two important reasons that
we propose to use random coding performance bounds in our study: (1) capacity calculations
assume infinite block lengths however for our practical purposes, we use finite block length
codes. Particularly the fact that product coding is only a concatenated coding scheme it will not
be on a par with a full length block code, (2) computation of capacity with the correlated channel
model is pretty complex even if there is any closed form expression. Plus, as the block length
tends large random coding bound approaches the capacity anyway.

Random coding bound is a tight upper bound on the ensemble average probability of error
Pe using maximum likelihood decoding5. It characterizes the exponential decay in the error
probability for a given set of code and channel parameters. In this, we think about the product
code as a single long blocklength (n1n2, k2k1) code. For a given C1 input byte error rate q, this
bound can be expressed as [2]

Pe ≤ e−n1n2Er(R,q) (24)

where R = ln(256) k1k2
n1n2

and Er(R, q) is the random coding exponent given by

Er(R, q) = max
0≤ρ≤1

[
ρ ln(256)− (1 + ρ) ln

(
255(

q
255

)
1

1+ρ + (1− q)
1

1+ρ

)
− ρR

]
(25)

In the case of correlated channel scenario based on our GE model, we may have one, two,
etc. C1 codewords to be totally in error. So conditioning on the lost rows, we can approximately
calculate the random coding bound and then average out to estimate it for the correlated scenario
as characterized by the GE model (thanks to the convexity of the exponential function). That is,

Pe ≤
n2

∑
i=0

(
n2

i

)
qi

c(1− qc)
n2−ie−(n1n2−in1)Er(Ri ,q) (26)

where Ri = ln(256) k1k2
n1n2−in1

and Er(Ri, q) is defined similarly to (25).

5Note that we assume to use bounded distance decoding for all component codes which performs worse than
maximum likelihood decoding.
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LTO 8 LTO 9

C1 (249,237,13) (243,231,13)

C2 (96, 84, 13) (192, 168, 25)

Efficiency 95.18% 95.06%

Table 1: C1 and C2 code parameters for different generations of LTO

2.5 Miscellaneous

2.5.1 Summary of expressions

We provide a summary of expressions for easy reference that shall be used to plot the perfor-
mances in the next section.

1. Under independent memoryless channel (DMC)

• (9): C2 decoder output byte error rate in all-error correction mode.

• (11): C2 decoder failure probability in erasure correction mode with 2a bytes reserved
for a C1 codeword miscorrections.

• (17): C2 decoder output byte error rate in erasure correction mode with 2a bytes
reserved for a C1 codeword miscorrections.

2. Under correlated channel (GE model)

• (20): C2 decoder failure probability in erasure correction mode with 2a bytes reserved
for a C1 codeword miscorrections. Counterpart of (11) under GE channel model.

• (21): C2 decoder output byte error rate in erasure correction mode with 2a bytes
reserved for a C1 codeword miscorrections. Counterpart of (17) under GE channel model.

• (23): C2 decoder output byte error rate in all-error correction mode. Counterpart of
(9) under GE channel model.

2.5.2 Relationship of qc to Tape Format

Suppose we have C channels as defined in the tape format. Then the number of C1 codewords
per channel is simply given by n2/C. If we let qt to be the probability of seeing a channel being
dead (due to clogged head etc). Since each clobbered channel leads to n2/C failed C1 codewords,
the probability of seeing a dead channel and the steady state probability of correlation has the
following relationship,

qc =
qt × C

n2
=

p
p + r

(27)

2.5.3 Presistent Errors: Head failures

In some of the use cases of the read operation, heads may be broken or clogged. In those cases,
some of the channels would not be able to correctly read by the readers causing some of the
codeword symbols to be lost. Since their locations are known due to an agreed format, the net
effect is the weakened C2 decoding performance. In other words, the total number of available
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redundant bytes of the C2 code would be n2 − k2 − scρ where sc is the total number of codeword
symbols per channel (format dependent number) and ρ is the total number of dead channels.
The previous expressions generated for C2 byte error rate are still applicable whereby n2 − k2
needs to be replaced by n2 − k2 − scρ where sc and ρ are the other two new parameters.

3 Numerical Results: LTO8 v.s. LTO9

We use the RS code parameter combinations for C1 and C2 code in LTO generations 8 and 9 as
outlined in Table 1. Thus, we compare these generations on the basis of either LTO raw data error
correction capability (usually referred as C1 input byte error rate) under independent detector
error rates q which is assumed to be independent or steady state probability of correlation channel
qc. The latter is presented for a given operating C1 input byte error rate. Our comparisons are
based on the C2 output byte error rates for different choices of C1 and C2 code parameter
combinations.

LTO9, BER All error (DMC) (9)

LTO9, BER Erasure (a=1) (DMC) (17)

LTO7/8, BER Erasure (a=1) (DMC) (17)

LTO7/8, BER All error (DMC) (9)

Random Coding Bound for LTO 7/8 (26)

Random Coding Bound for LTO 9 (26)

Figure 3: Product codes under DMC with different modes of operation. BER: Byte Error Rate and
FR: Decoder Failure Rate

We used two modes of operation in our numerical results:

“all-error” : Both C1 and C2 decoder operate in error correction mode i.e., they use all parities to
locate and correct errors. Using the code parameters given in Table 1 for instance both C1
and C2 can correct 6 byte errors in LTO8.

“erasure” (a = 1) : C1 decoder operates in all–error correction mode. If C1 decoder fails (i.e., more than 6 byte
errors occur), then the decoder labels all symbols as “erasure” and passes this information
for C2 decoder to use. C2 decoder allows/reserves two bytes for a potential C1 decoder
miscorrection. The rest of the parities are used to correct only erasures. For instance in
LTO8, 10 redundant bytes are used to correct at most 10 erasures.

In Fig. 3, we primarily compared different LTO C1 and C2 code combinations as a product
code under DMC using different modes of decoding operations such as “all-error” mode and
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LTO9, BER Erasure (a=1) (CCM) (q
c
=10-3) (21)

LTO7/8, BER Erasure (a=1) (CCM) (q
c
=10-3) (21)

LTO7/8, BER All error (CCM)  (q
c
=10-3) (23)

LTO9, BER All error (CCM)  (q
c
=10-3) (23)

Random Coding Bound for LTO7/8 (26)

Random Coding Bound for LTO9 (26)

Figure 4: Product codes under a simple correlated channel introduced in the text with different
modes of operation. We have also included the random coding bounds to show the limits.

“erasure” decoding mode with a = 1. As can be seen, with the C2 code change in LTO 9, we
obtained dramatic improvements. On the other hand, “all error” mode of decoding seems to
achieve better C2 byte error rates for the durability of interest under this simple channel model.
This result should come with no surprise as the fact that the input error correlation is zero make
”all error” mode to be optimal. We have also included the random coding bounds for both
generations of LTO in the same figure. Note that these bounds mean that even if we use complex
ML decoding with infinite number of iterations the performance cannot beat these bounds and
hence they serve as the performance limits of the coding style at hand.

On the other hand, we note that our channel model consists of pure random symbol errors
i.e., DMC which is hardly the case in reality. For that purpose we have also considered a channel
model based on GE with memory to simulate the correlation and the results are plotted in Fig.
4 with qc = 10−3 as a function of C1 input byte error rate. As can be seen, “all-error” mode is
not anymore a preferable option. On the other hand “erasure” mode of C2 decoding clearly
helps with the final C2 byte error rates for both LTO9 and LTO8 generations. Also note that we
assumed a relatively high qc which makes the error floor quite visible. For lower values, the floor
will appear at lower BER rates.

In Figs. 5 and 6, we presented C2 output byte error rate as a function of steady state probability
of correlation at fixed C1 input byte errors of 10−3 and 10−2. As can be seen, at low C1 input
BER, “erasure” mode clearly helps the system as compared to “error” mode for a range of qc.
When the C1 input BER increases to 10−2, “erasure” mode may not necessarily be optimal for
small steady state probability of correlation.

Finally in Figs. 7 and 8, we plot LTO7/8 and LTO9 product code C2 byte error rate perfor-
mances both as a function of C1 input byte error rate as well as C2 input byte error rate under
DMC and GE channels (qc = 0.001). In addition, we have also analyzed what happens to perfor-
mance with the presence of different number of dead channels in the system i.e., ρ = 0, 1, 2, 3.
Depending on the format, LTO7/8 leads to 3 byte loss per dead channel whereas this number is
6 bytes for LTO9 format specification. Note that the GE model shall simulate the drop-out, signal
loss and other correlated noisy events that can happen within the system due to tracking and
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LTO8, All-error (23)

LTO9, All-error (23)

LTO9, Erasure(a=1) (21)

LTO9, Erasure(a=1) (21)

Figure 5: Product codes under a simple correlated channel based on GE model as a function of
steady state probability of correlation at an operating C1 input byte error rate of 10−3.

dimesionality problems. On the other hand dead tracks are modeled to be deterministic and
with bad drive equpped with bad heads, we illustrate how the final performance is got effected.

In all of our plots, we indicated which expressions we use to calculate the corresponding
curve in our performance comparisons.
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Figure 6: Product codes under a simple correlated channel based on GE model as a function of
steady state probability of correlation at an operating C1 input byte error rate of 10−2.
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Figure 7: LTO8 performance under DMC and GE Channel (qc = 0.001) using different dead
channel scenarios
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Figure 8: LTO9 performance under DMC and GE Channel (qc = 0.001) using different dead
channel scenarios
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