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1 Introduction

1.1 RS decoder

In this note, we assume a bounded distance decoder for C1 and C2 Reed-Solomon (RS) codes

defined over the field GF (q), where q is a prime power. The extension field q = 2m is usually

assumed for hardware friendly implementation. For any of these RS codes, let the minimum

distance of the code be d. The decoder geometrically assumes spheres of radius bd
2
c centered

around in every valid codeword. If the received word falls in one of these spheres, the decoding

is successful and the decoded codeword is the one associated with that sphere. Otherwise one

of the two things may happen: (1) the received word can fall in the interstitial space between

spheres in which case a decoding failure is declared or (2) it may fall in one of the other spheres

in which case the error cannot be detected and the codeword is miscorrected.

1.2 Modes of operation

Consider the product code constituted of C1 and C2, two RS codes encoding a 2-D array of

user data. Let us assume that C1 RS code with parameters (nC1, kC1) defined over GF (q), is

set to correct byte errors only. Then, C2 RS code defined over the same field with parameters

(nC2, kC2) can operate at bnC2−kC2

2
c + 1 different modes. For example the decoder can be set

to correct 0 errors and nC2 − kC2 erasures. Similarly, it can also be set to correct 1 byte error

and nC2−kC2− 2 erasures, so on so forth. The list of modes are illustrated in the Table below.

A similar table can be generated for C1 code decoding as well.
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MODES of C2 Byte Errors Byte Erasures

Mode 1 0 nC2 − kC2

Mode 2 1 nC2 − kC2 − 2

Mode 3 2 nC2 − kC2 − 4
...

...

Mode bnC2−kC2

2
c + 1 bnC2−kC2

2
c 0

Table 1: Modes of operation

Note that the decoder, set to operate in Mode i, can correct up to i − 1 byte errors and

nC2 − kC2 − 2(i − 1) erasures. A C2 decoder operating at Mode i will successfully decode

the received codeword if the number of byte errors τ and erasures s satisfy τ ≤ i − 1 and

s ≤ nC2 − kC2 − 2(i − 1) at the same time. Otherwise a failure message will be generated. In

an unlikely event of no reported erasures, the decoder may even miscorrect the received word

if enough number of byte errors corrupt the codeword.

Note that one could have set C2 to operate in any mode based on the the number of byte

errors and erasures, so that one can have more flexible decoding algorithm. In other words, C2

will be able to decode any codeword as long as 2τ +s ≤ nC2−kC2. In a way, this corresponds to

an operation using the union of all modes (Note that this constraint is a looser constraint than

is the previous one). The problem with this approach is that when the C2 decoder operates at

Mode 1, all-erasure mode, C2 will either fail or miscorrect (decoding error) every so often the

C1 decoder leads to miscorrections (and C1 miscorrections are passed to C2 decoder unnoticed).

In particular, if the byte errors happen not to be in one of the erased locations, the C2 decoder

may fail. In the worst case, C2 decoder can even miss the erroneous bytes.

The C2 decoding error is something quite undesirable from a customer point of view.

Therefore, it might be good idea to operate C2 decoder in all modes except Mode 1. Although

switching from one mode to another might be an extra complexity task, such a flexibility can

be shown to improve performance. On the other hand, one can fix C2 mode during subsequent

decodings to one of the possibilities shown in Table 1.

Traditionally, since byte errors are only due to C1 miscorrections and the number of mis-

corrections are limited to one with high probability, C2 decoder is set to operate at Mode 2.

However, the choice of the decoder mode should be a function of error statistics and target

C2 failure rates. In otherwords, given the byte error statistics and a target failure rate, C2
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decoder operating at Mode i′ may be preferable over C2 decoder operating at Mode i′′ where

i′, i′′ ∈ { Mode 1,. . . , Mode bnC2−kC2

2
c}. In this short note we will explore some particular cases

to support this claim.

1.3 Random and Independent Byte Errors

The straightforward model for byte errors is given by a binomial distribution in which the byte

errors are assumed to be completely random and independent of eachother. We consider two

modes of operation of particular interest for C1 and C2 in the next two subsections.

1.3.1 CASE 1: C1 Mode bnC1−kC1

2
c + 1, C2 Mode 2

Since C2 is operating at Mode 2, let us assume no performance degradation due to C1 miscor-

rections as it is extremely low probability to have two or more C1 miscorrections per product

code (under the binomial model) that will violate this assumption. Let pbyte be the byte error

rate at the input of C1 decoder. Probability that C1 declares a decoding failure is therefore

given by the binomial cumulative distribution function as follows

pC1,f =

nC1∑

i=bnC1−kC1
2

c+1

(
nC1

i

)
pi

byte(1− pbyte)
nC1−i (1)

Here we can show that the probability of having two C1 decoding errors can be upper

bounded by

Pr{Violation of Assumption} <
pC1,f

bnC1−kC1

2
c!nC1(nC1 − 1) (2)

which is way lower than pC1,f for small pbyte and large nC1 − kC1.

After C1 decoding, the decoder may adapt a strategy to pass erasure information to C2.

Here we assume a simple methodology that once a C1 decoding fails, all the bytes in the

C1 codeword are labeled as “erasures” with probability one and passed to C2 decoder (This

strategy is not necessarily the optimal way as we shall see later different approaches can improve

the C2 decoding performance. We do not explore this any further in this note).

Since C2 operate at Mode 2, C2 failure probability can be approximated by

pC2,f =

nC2∑

i=nC2−kC2−1

(
nC2

i

)
pi

C1,f (1− pC1,f )
nC2−i (3)
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Here, the worst case C2 decoder error can be upper bounded by < pC2,f/(nC2 − kC2 − 2)!

[1]. Thus, the above approximation is quite accurate. Also, the binomial distribution in this

expression is not due to our original random and independent error modeling. It is rather

due to C1 codewords scattered across different locations on the recording medium so that the

errors effecting those codewords, which happen to belong to the same product code, are almost

random and independent.

1.3.2 CASE 2: C1 Mode bnC1−kC1

2
c + 1, C2 Mode bnC2−kC2

2
c + 1

In another scenario, we could use C2 the way we use C1, i.e., all error detecting and correcting

mode. In this scenario there is no information passing between decoders i.e., they work inde-

pendent of eachother. So here we investigate whether information exchange between decoders

is of any value from a performance point of view.

When C1 decoder fails, due to the decoding spheres argument of bounded distance decoding,

there must be at least bnC2−kC2

2
c + 1 byte errors. If there is a miscorrection by C1, the most

likely decoded codewords would be the neighboring codewords. Thus, the decoded wrong

codeword will lead to at most nC2 − kC2 − bnC2−kC2

2
c byte errors which is less than or equal to

the number of byte errors if the C1 decoder fails. We will consider number of byte errors due

to C1 failures as our reference point in case of miscorrections as this will provide the worst case

scenario.

Since we are talking about average failure probabilities, we should consider the average

number of byte errors due to C1 decoding failure. Let ρC1 be the expected number of byte

errors whenever C1 decoder fails or miscorrects. Using 2-D array product code structure, one

can anticipate that the probability of any byte of a C2 codeword is in error is given by ρC1/nC1

from “throwing balls to bins” argument. Assuming that there are m C1 decoder failures,

probability that k ≤ m byte positions of a C2 codeword are actual byte errors is given by
(

m

k

)(
ρC1

nC1

)k (
1− ρC1

nC1

)m−k

(4)

In order for C2 failure to occur, we must have m ≥ k ≥ bnC2−kC2

2
c + 1, other wise C2 will

result in successful decoding. By averaging over the C1 failure probabilities, we obtain

pC2,f =
nC2∑

m=bnC2−kC2
2 c+1

m∑

k=bnC2−kC2
2 c+1

(
m

k

)(
ρC1

nC1

)k (
1− ρC1

nC1

)m−k (
nC2

m

)
pm

C1,f (1− pC1,f )nC2−m (5)

=
nC2∑

m=bnC2−kC2
2 c+1

m∑

k=bnC2−kC2
2 c+1

(
nC2

k

)(
nC2 − k

m− k

) (
ρC1

nC1

)k (
1− ρC1

nC1

)m−k

pm
C1,f (1− pC1,f )nC2−m
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One can notice that for small enough pbyte, we have ρC1 ≈ bnC1−kC1

2
c + 1 because other

possibilities are quite unlikely under random and independent byte error assumption. We plot

the C2 failure probabilities for both cases covered so far in Fig. 1 for (240,230) C1 and (96,84)

C2 RS codes. As can be seen, for a target failure rate of 1e-17, Case 2 – all decoders operating

at error correcting mode – is preferable.
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Figure 1: Comparison of the performance due to Case 1 and Case 2 under random and independent byte

errors

1.4 Totally Correlated Byte Errors

In this section, we assume the other extreme that once the C1 decoder fails, all the bytes are in

error. In otherwords, if a failure occurs, the whole codeword is assumed to be full of actual byte

errors. The probability of C1 failure is still assumed to be given by the binomial distribution. Of

course, real data modeling and noise/burst characteristics may render this assumption wrong.
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1.4.1 CASE 1: C1 Mode bnC1−kC1

2
c + 1, C2 Mode 2

Since in this case, whenever C1 decoder declares a failure, the whole codeword bytes are flagged

as erasure, the performance expressions do not change.

1.4.2 CASE 2: C1 Mode bnC1−kC1

2
c + 1, C2 Mode bnC2−kC2

2
c + 1

When C1 decoder fails, the number of bytes in error is nC1 with probability one. Likewise, if

C1 decoder miscorrects, the wrongly decoded codeword causes number of byte errors assumed

to be close to nC1. This assumption simplifies our expressions that are derived earlier.

Let us represent the number of failed C1 codewords by m. In order for C2 failure to occur,

m ≥ bnC2−kC2

2
c + 1. This probability can be approximated by

pC2,f =

nC2∑

i=bnC2−kC2
2

c+1

(
nC2

i

)
pi

C1,f (1− pC1,f )
nC2−i (6)

Let us plot this result on top of our previous derived performance results for (240,230) C1

and (96,84) C2 RS codes.
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Figure 2: Comparison of the performance due to Case 1 and Case 2 under random and independent byte

errors
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Let us assume a target failure rate of 1e-17. As can be seen from the figure, if the byte errors

were completely random and independent, Case 2 would be able to get our performance down

to the target rate. However, when a complete correlation is assumed between C1 codeword

byte errors, even though we use binomial model for this scenario, Case 2 suffers a lot compared

to Case 1 and no longer is preferable. Assuming a binomial model, our performance will be

somewhere in between of these performance curves.

Another comment is for Case 1. As can be seen in both “correlated” and “independent”

scenarios, the decoding performance shows the same values. In fact, in “correlated” case, the

decoder uses its full potential for erasure decoding and computes error values for each of these

erasure locations. Whereas in “independent” case, erasure decoding mostly computes 0s for

those byte locations in which there found to be no byte errors. Those locations were simply

flagged by C1 decoder as erasures erroneously. Therefore, this implies that if the decoder

was able to use its full potential in “independent” case, the decoding performance would be

a lot better. The latter advices us that better decoding alternatives might be possible for

“independent” case.

2 Conclusions and Future Work

As this short note shows, the modes of C1 and C2 must be selected based on the error statistics

and parameters of C1 and C2 RS codes. As the real drive lies between “random and inde-

pendent” and “total correlation” scenarios, one mode might be preferable over the other. For

example if the drive is known to suffer due to major burst type of errors it might be preferable

to have C2 work in Mode 2.

These results also show that a more flexible decoding procedure can be devised for C2

decoder that can handle byte errors other than miscorrections due to C1, while taking advantage

of more flexible schemes such as the one that can choose among the possible modes of operation

while decoding subsequent codewords.
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