
MEF University Big Data Program
(invited lecture)

Clustered Data Protection, Erasure
Coding and Jerasure 2.0.

Outline

• What is Erasure coding?

• What is Jerasure?

• Current status

• Some contributions to Jerasure 2.0

• How to use it

• Performance Results

• Real life applications: Clustered Storage,
OpenStack SWIFT, Ceph, etc…

What’s erasure coding?

• It is about creating redundancy to combat
against losses.

k m

Encoding: recipe for creating redundancy

Decoding: recipe for recovering data

What’s erasure coding?
• It is about creating redundancy to combat

against losses.

k m

Encode

Decode

Only k blocks
Are used.

Erasure Coding

• Data is divided into K symbols.
• Encoder generates extra M parity symbols.
• Data is clear at the output: Systematic Coding.
• In storage systems, we encode data blocks!

K data symbols M parity symbols

Encoding

Generator Matrix

Symbols are w-bit long

Use Galois Field
arithmetic to
calculate parities.

MULTIPLICATION
& ADDITION

Erasure Coding

• Data is divided into K symbols.
• Encoder generates extra M parity symbols.
• Data is clear at the output: Systematic Coding.
• In storage systems, we encode data blocks!

K data symbols M parity symbols

Encoding

Generator Matrix

Symbols are w-bit long

Use Galois Field
arithmetic to
calculate parities.

MULTIPLICATION
& ADDITION

Erasure Coding

• Data is divided into K symbols.
• Encoder generates extra M parity symbols.
• Data is clear at the output: Systematic Coding.
• In storage systems, we encode data blocks!

K data symbols M parity symbols

Encoding

Generator Matrix

Symbols are w-bit long

Use Galois Field
arithmetic to
calculate parities.

MULTIPLICATION
& ADDITION

Erasure Coding

• Data is divided into K symbols.
• Encoder generates extra M parity symbols.
• Data is clear at the output: Systematic Coding.
• In storage systems, we encode data blocks!

K data symbols M parity symbols

Encoding

Symbols are w-bit long

We XOR and multiply regions!

Erasure Coding

• Data is divided into K symbols.
• Encoder generates extra M parity symbols.
• Data is clear at the output: Systematic Coding.
• In storage systems, we encode data blocks!
• Use Galois Field arithmetic to calculate parities.

– Use XOR to compute simple parities.
– Use Galois multiplication and XOR the rest.
– We XOR and multiply regions!
– Generator Matrices tell us which data symbols take part in parity computations.

K data symbols M parity symbols

Encoding

Symbols are w-bit long

Erasure De-Coding

• Data is divided into K symbols.
• Encoder generates extra M parity symbols.
• Data is clear at the output: Systematic Coding.
• In storage systems, we encode data blocks!
• Use Galois Field arithmetic to calculate parities.

– Use XOR to compute simple parities.
– Use Galois multiplication and XOR the rest.
– We XOR and multiply regions!

• Decoding: Any M failures can be tolerated!

K data symbols M parity symbols

Decoding

Symbols are w-bit long

What is Jerasure?
• In 2007, Dr. Plank from Univ. of Tennesse has started a study of implementing high-

performance erasure coding based on various published techniques.

• Ceph and Open Stack Swift integration status:
– Both Ceph and Swift has plug-ins for Jerasure 2.0.

• Kaminario (a company selling all-flash arrays) uses jerasure 1.2 in their software
offerings (see references).

• Jerasure is based on a library that is capable of running fast Galois operations that
goes with the name GF-complete.

 Open Source Erasure Coding Library that found place in many open source projects.

 GF-Complete/Jerasure libraries are no longer supported by Dr. Plank and his team.

 Jerasure 2.0++ is a C++ implementation by the same group of people, probably at the beginning of 2015.

The source code is not available but the document is:

– http://jerasure2.googlecode.com/svn/trunk/jerasure3/documentation/paper.pdf

Jerasure 1.0

Jerasure 1.2
Jerasure 1.2A

Jerasure 2.0

Sept 2007 August 2008 2011
Jan. 2014

Jerasure 2.0++

2015 Support for Jerasure
Ends as of 2014.

http://jerasure2.googlecode.com/svn/trunk/jerasure3/documentation/paper.pdf

Review of Jerasure Encode Structure

• Methodology of
encoding: three
phases
– 1. read,
– 2. encode
– 3. write

blocks
• Performance

parameters subject
to optimization:
– Packetsize
– Buffersize
– K (# data blocks)
– M (# parity blocks)
– W (word size)
->Galois field parameter

MSFT uses w = 4
CLEVERSAFE uses w = 8
EMC uses w = 8

Packetsize is not
random (usually
dependent on the
cache sizes)
Small/Big buffersizes
can change the number
of I/O we make with the
disk.

Caveats by Jerasure’s originators

• “Reducing cache misses is more important than
reducing XOR operations.”
– So maintaining the existing memory hierarchy is a plus.

• “In any performance study, effects due to the memory
hierarchy must be observed, and a final experiment
demonstrates clearly that the encoding parameters
should take account of the machine’s cache size to
achieve best performance.”
– So the optimized performance is quite dependent on the

hardware.

• We will strictly follow these guidelines.

Two parts to multi-threaded
implementation

• First approach (dropped it)
– There are multiple reads of independent segments of the file

– Each thread is responsible for encoding an individual segment.

– This requires a different memory hierarchcy and architecture.

– Memory is exclusively used for read/write.

• Destroying the exisiting memory hierarchy led us to have reduced performance!

• Second approach (we adapted)
– Each segment gets encoded in a loop to compute parity blocks.

– Each parity block is computed by a different thread.

– This requires no change to the memory hierarchy and architecture.

– Memory is shared for read-only.

• Multiple threads accessing the the same memory locations.

• But they can be located in different L1 and L2 caches.

Multi-threaded Implementations
• All three stages can be parallelized.

– We focus on the pure encoding/decoding and report performance in
terms of throughput.

• In order not to change memory architecture,
– We let each thread to compute each parity block.

• Data buffer is shared among the threads and read-only! No mutexes are used.

Parallel
Regions

G: Generator Matrix

Two approaches

• POSIX THREADS (pthreads)
– More flexible and higher level control over threads, manual management of threads: create,

join, sync, etc.
– Need to define extra data types and functions, manually create, join threads, overhead of thread

creation.

• OpenMP
– Shared memory standard, higher level control, task-based, easier to deploy, automatic

management of threads.
– Easy to create and join threads using pragmas. Avoid false sharing through copying shared

variables.

OpenMP Examples:

Unknown a priori
the number of parities to be generated (for the encoder)
the indexes /the number of lost blocks to be recovered (for the decoder)

Short on openMP standard

• OpenMP is a multi-threading, shared address model.
– Threads communicate by sharing variables

• Constructs in OpenMP are compiler directives.
– #pragma omp construct [clause [clause]…]

– Example: #pragma omp parallel num_threads(4)

• Race condition: when the program’s outcome changes
as the threads are scheduled differently.

• Use synchronization to protect data conflicts
(Expensive).

• Have to include: #include <omp.h>

A Picture to consider…

• Master thread spawns a team of threads as needed
• Parallelism added incrementally until performance goals are

met: i.e. the sequential program evolves into a parallel
program.

• Mutual Exclusion: Only one thread at a time can enter a
critical region

Some more details…
• The schedule clause affects how loop iterations are mapped onto

threads.
• One of the performance degradation: False Sharing.

X=9

Shared Memory

Cache0 Cache1 Cache2 Cache3

P0 P1 P2 P3

X=9 X=9

• False sharing degrades performance when all of the following
conditions occur.
• Shared data is modified by multiple processors.
• Multiple processors update data within the same cache line.
• This updating occurs very frequently (for example, in a tight loop).

• Note that shared data that is read-only in a loop does not lead to false
sharing.

• Solution: Use private copies at the caches.

Contributions
• Encoder and Decoder are re-written.

– There are new functions and struct definitions that could be placed in other jerasure files,
but for the sake of keeping the rest intact, we included all of them in the encoder and
decoder files.

• Encoder’s parity generation loop is fully multi-threaded.
– With all memory allocations are managed and no mutexes are used.
– Core functions of GF-complete (which heavily use SIMD instructions) are called by all the

threads explicitly.

• Decoding structure of Jerasure is strictly serial:
– Assume k’<k data blocks, m’<m parity blocks are lost.
– First k’-1 data blocks are recovered, then using XOR (low complexity) to recover the

remaining data block. Finally, lost parities are recovered by re-encoding.

• Decoding of multi-threaded version has minimum serial parts.
– Recovers k’ data blocks all at the same time, each recovery is accomplished by a different

thread. Also, assuming the lost data blocks are Zero, m’ parity blocks are partially
recovered by multiple threads. (Total # of threads = k’ + m’)

– Available data is shared amoung threads (potentially across caches)
– Using only the restored data, m’ parity blocks are all re-encoded at the same time. The

result of the first step is combined with the result of this step (using simple XOR) to
gerenate the full recovery of parities (again using multiple threads).

• And ….other optimizations in looping, elimination of some of the
conditional statements etc.

Performance Results

• We run jerasure and our own version on different systems.
– To generate results that can be compared and verified, we picked two

laptops that are close in configuration to that of Dr. Plank’s to generate
similar results.

– To generate real-use-case results, we have also used high-end CPUs.

• We compared pure encode/decode speeds to be able to avoid the
Disk/RAM I/O time.

• There are four testing combinations:
– Single process single thread
– Single process multiple thread
– Multiple process single thread (each process is single threaded)
– Multiple process multiple thread (each process is multi-threaded)

• Python is a great tool to simulate multiprocessing environments!

Test System description
• Jerasure “reed_sol_van” using

– File: 256MiB binary file.
– K=8, M=4, W=8, packetsize = 2000/6000bytes. Buffersize is variable.
– Since M=4, we use four threads one for each parity computation.

• High-end
 System info:

Intel Xeon CPU
E5620 2.40GHz

OS Centos 6

Sockets 2

CPU Cores 8 (4 for each socket)

CPU Threads 16

Arc 64-bit

CPU speed 1.6GHz

L1i/d Cache 32KB

L2 Cache 256K

L3 Cache 12288K

Memory ~49GB

SIMD enabled yes

Policy: (K=8,M=4)
• Pure encoding/decoding performance

as a function of buffersize.
• Optimized packetsize (2K-20K)

– Based on the cache structure.

• Encoding/Decoding performance is
pretty stable for all buffersizes.

• Multi-threaded implementation is less
effected by the cache sizes.

• BLOCK_SIZE = 10KB. (sim.
Parameter)

2 lost data
segments

3 lost data
segments

4 lost data
segments

Due to overhead associated
With thread creation etc., we
Are not able to demonstrate

Performance improvement for
A range of buffersizes.

I/O activity increases,
especially for big files!

More potential for multithreading

Policy: (K=52,M=8)

• Jerasure’s performance looks more stable.

• Same trends can be observed with respect to multi-threaded version.

• More than 3x improvement for both the encoder and decoder.

8 lost data
segments

A multiprocess scenario (test case)

• A compute node serves 5 file-store requests.
• For now, we only focused on the encoder.

test0.txt ~ 8MiB

test1.txt ~ 16MiB

test2.txt ~ 32MiB

test3.txt ~ 64MiB

test4.txt ~ 128MiB

…

Client
File
Store
requests

The server responsible for
Encoding/decoding/repairing

Server

Disks
backend

Recap: Jerasure and pure computation time

• Main engine for encoding is encoder.c
– Variable definitions
– Error check arguments (ECA)

• Packetsize, buffersize adjustments.
• Arguments/Parameters validy check.
• File size adjustments

– Create coding/bit/schedule matrices (CC)
– Loop starts (L)

• File read, zero padding, pointer set (I/O)
• Encoding
• Write the data/parities to files (I/O)

– Create/write metadata (MET)

Encoding
Speed
(MB/sec)

Total Speed
(MB/sec)

time

ECA
C
C

I/O I/O I/O I/O I/O I/O I/O I/O MET

loop

ECA

Time consumed for pure encoding = T2 – T1

C
C

T1 T2

For multiprocess environment
time

ECA

Time consumed for pure encoding

C
C

Thread preparation,
arrival of the file…

Error, software checking

All random variables that should be
parameterized by the file contents, size etc.
HARD to MODEL!

Time it takes to complete other required parts of
the software, I/O, file generations.

A way to illustrate what’s going on is to use staircase plots

Time consumed for pure encoding

Test0.txt

Test1.txt

For multiprocess environment
time

ECA

Time consumed for pure encoding

C
C

Thread preparation,
arrival of the file…

Error, software checking

All random variables that should be
Parameterized by the file contents, size etc.
HARD to MODEL!

Time it takes to complete other required parts of
the software, I/O, file generations.

A way to illustrate what’s going on is to use staircase plots

Time consumed for pure encoding

Test0.txt

Test1.txt Suppose
this is
the origin
where the computation starts.

For multiprocess environment
time

ECA

Time consumed for pure encoding

C
C

Thread preparation,
arrival of the file…

Error, software checking

All random variables that should be
Parameterized by the file contents, size etc.
HARD to MODEL!

Time it takes to complete other required parts of
the software, I/O, file generations.

A way to illustrate what’s going on is to use staircase plots

Test0.txt

Test1.txt
1

2 Use different
Levels to distinguish
different files

Following results are average of 50 independent runs.

(8,4) psize = 2000, bsize=5M

0.08665
sec

0.04907
sec

encoder.c

encoderMT2.c

aggragate
Throughput of
pure encoding =
5054MB/sec

aggragate
Throughput of
pure encoding =
2862MB/sec

(8,4) If files are the same size ~
128MiB

0.091766

0.05080

aggragate
Throughput of
pure encoding =
6974MB/sec

aggragate
Throughput of
pure encoding =
12598MB/sec

encoder.c

encoderMT2.c

Run with 52/8 the same simulation??

(k=52,m=8) packetsize = 2000, buffersize=5M

0.1613
sec

0.0657
sec

aggragate
Throughput of
pure encoding =
1537MB/sec

aggragate
Throughput of
pure encoding =
3775MB/sec

encoder.c

encoderMT2.c

(k=52,m=8) If files are the same size ~ 128MiB

0.184
sec

aggragate
Throughput of
pure encoding =
3478MB/sec

0.0626
sec

aggragate
Throughput of
pure encoding =
10224MB/sec

encoder.c

encoderMT2.c

Summary

• Multithreaded version maintains the same performance
across different buffersizes.
– Good for big files.
– Buffersize optimization seem not to be relevant.

• On average, more than 3x pure encode/decode speed gain.
• In a multi-process environment, while the size and the

number of files are changing…
– The performance of the multi-threaded version shows the least

change.

• Compared to original encoder/decoder, multi-threaded
version has more potential for improvement and room for
optimizations.

References

• James Plank, “Fast Galois Field Arithmetic Library in C/C++” Technical Report UT-
CS-07-593, U of Tenessee, 2014.

• Kaminario open source project:
http://kaminario.com/resources/files/Kaminario_Open_Source_DOC1200021_00.pdf

• Ceph’s jerasure testing: http://dachary.org/?p=3665

• J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. W. O’Hearn. A performance
evaluation and examination of open-source erasure coding libraries for storage. In 7th
USENIX FAST, pages 253–265, 2009.

• Erasure codes and swift:
http://www.snia.org/sites/default/files/Luse_Kevin_SNIATutorialSwift_Object_Storage
2014_final.pdf

http://kaminario.com/resources/files/Kaminario_Open_Source_DOC1200021_00.pdf
http://kaminario.com/resources/files/Kaminario_Open_Source_DOC1200021_00.pdf
http://kaminario.com/resources/files/Kaminario_Open_Source_DOC1200021_00.pdf
http://dachary.org/?p=3665
http://dachary.org/?p=3665
http://www.snia.org/sites/default/files/Luse_Kevin_SNIATutorialSwift_Object_Storage2014_final.pdf
http://www.snia.org/sites/default/files/Luse_Kevin_SNIATutorialSwift_Object_Storage2014_final.pdf
http://www.snia.org/sites/default/files/Luse_Kevin_SNIATutorialSwift_Object_Storage2014_final.pdf

COMPLETE SET-UP GUIDE

Jerasure 2.0

Download/Install GF-Complete
• To be able to use Jerasure library, we need to install GF-Complete

library (current version 1.02).
– For easy cloning use git (yum install git):

• git clone https://github.com/ceph/gf-complete.git

– To be able to run ./configure, we need
• yum install libtool
• autoreconf –install

– Then, configure using autoconf/automake
• ./configure
• sudo make
• sudo make install

– In case, the executable paths could not be found:
• Check the enviroment variable LD_LIBRARY_PATH and make sure it points

to the right directory.

• Try/test if it is succesfully installed:
– gf_mult 5 4 4 (multiply 5 by 4 in GF(2̂ 4))
– gf_div 7 5 4 (divide 7 by 5 in GF(2̂ 4))

https://github.com/ceph/gf-complete.git
https://github.com/ceph/gf-complete.git
https://github.com/ceph/gf-complete.git
https://github.com/ceph/gf-complete.git

Download/Install Jerasure 2.0

• For easy cloning use git
– git clone https://github.com/tsuraan/Jerasure.git
– autoreconf --install
– ./configure
– sudo make
– sudo make install

• Check the enviroment variable LD_LIBRARY_PATH and make sure it points to the
right directory (ex: /usr/lib/bin/)

• Try/test jerasure_01 3 15 8 that generates a 3x15 matrix in which the elements are
chosen from GF(2̂ 8).

• In case, your autoconf and/or automake is out of date, please upgrade them and include
the install directory in your $PATH variable.
– Run autreconf –ivf
– Then, make and make install.

• If autoreconf –ivf asks for (if not installed already) libtoolize, install it:
– Sudo yum install libtool

https://github.com/tsuraan/Jerasure.git
https://github.com/tsuraan/Jerasure.git

MATH BEHIND IT

Jerasure 2.0

How does GF operations work?

• GF(q) is a finite set of elements on which two major
operations, addition and multiplication are defined.

• In order to satisfy the axioms of a mathematical field, q
must be either a prime number or a power of prime.

• Example: GF(5) = {0,1,2,3,4}.
– 2 + 1 = 3,

– 2 + 3 = 0,

– 3 + 4 = 2

– 2 x 3 = 1,

– 3 x 4 = 2 …

Extended GF

• Definition: A primitive element is an element such that
every field element except zero can be expressed as a power of
.

• Example: 2 and 3 are primitive elements of GF(5).

• Extended field GF(qm) requires polynomial algebra.

• Polynomials represent the elements in the extended field.

• Polynomial arithmetic is similar to real number system except
coefficients of the polynomials obeys the axioms of GF(q).

• Definition: The root of the primitive polynomial is known as
the primitive element of GF(qm).

Binary Base Field / Hardware

• Use GF(2m) to generate hardware
friendly representation of field
elements i.e., binary vectors.

• The coefficients of the polynomials
are from GF(2).

• Example: Let us construct GF(23)
using the primitive element of the
form x3 + x + 1.
– Let be a primitive element and thus
3 = + 1.

– Similarly, other elements can be
found as given by the table to the
right.

– Each element can be expressed as a
three-bit tuple in hardware.

Major operations:
Addition/Multiplication

• Addition in GF is simple.
– Element/s addition is equivalent to binary

representation addition – XOR operation.

• For multiplication, we need to find an alternative
representation of elements using matrices instead
of vectors.

• Here is how:

1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

1 1 2 …

With this new representation…
• We can do matrix multiplications in binary:

1 1 1

1 2

1 2 4

1

5

=

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 1 0 1 1

0 0 1 0 1 0 1 0 1

1 0 0 0 1 0 0 1 1

0 1 0 0 1 1 1 1 0

0 0 1 1 0 1 1 1 1

=

0

1

0

1

0

0

1

1

1

0

0

1

1

0

0

0

1

0

2

1

9 XOR

operations

12 XOR

operations

15 XOR

operations

Encoding/Decoding

• Matrix algebra. G is the generator matrix. d is data vector.

• G can be decomposed to compute parity vector c.

• From n symbols, suppose that we lost some of them.
• From the unlost symbol set, choose any k symbols.

– This corresponds to a particular k rows of G.

• Multiply the unlost/selected k symbols with the inverse of

Reconstruction

WHAT EXTRAS J2.0 BRINGS?

Jerasure 2.0

What is SIMD?

• There are four different types of comupters:
– SISD: single instruction single data
– SIMD: single instruction multiple data
– MISD: multiple instruction single data
– MIMD: multiple instruction multiple data

• Interesting one is SIMD:
– all parallel units share the same instruction, but they carry it out on

different data elements. The idea is that you can, say, add the arrays
[0,1,7,3] and [2,3,5,4] element-wise to obtain the array [2,4,12,7] in one
step: for this, there have to be four arithmetic units at work, but they can all
share the same instruction (here, "add"), and work by all performing the
same actions in tight, lock-step synchronicity.

– This usually means putting multiple data-manipulation techniques inside
the same processing core as one instruction decoder, for the sake of the
tight timekeeping.

• An example to MIMD is multi-threaded processing.

GF addition/multiplications using
SIMD

• Basic data type in SIMD instructions is 128-bit words (machine
dependent).
– One interesting question is how much of a change does Jerasure

implementation require when we have 256-bit and 512-bit numeric
processing capabilities.

– Reference: https://software.intel.com/en-us/blogs/2013/avx-512-
instructions

• Instructions used in Jerasure:
– mm_set1_epi8, mm_set1_epi16, mm_set1_epi32, mm_set1_epi64.

• Generates a 128-bit var iable by replicating 1-byte, 2-byte, 4-byte and 8-byte copies.

– mm_and_si128(a, b), mm_xor_si128(a, b)
• Performs addition and XOR of 128-bit words a and b

– mm_srli_epi64(a, b), mm_slli_epi64(a, b)
• Treat each input as two 64-bit word and right/left shift each by by bits.

Example: Multiple 128-bit region A by
7 in GF(24)

• SIMD example: Performing operations 128-bit at a time.

• For 32 independent multiplications, we perform only 6 instructions.

• More to come later.

• For more info please see: http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf

All the elements in GF(24)

Table for 7*element in GF(24)

Mask for isolation

of the LS 4-bits
Mask for isolation

of the MS 4-bits

Isolate the LS 4-bits

Look up the

corresponding value from

the table

Isolate MS 4-bits

Shift to LS position

Look up the

corresponding value from

the table

Finally XOR LS and MS

4-bits to obtain the result.

1

2
3

4
5

6
Instruction
Sequences

LS: Least Significant
MS: Most Significant

http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-GF.pdf

ENCODING/DECODING
ARCHITECTURE

Jerasure 2.0

Operations/timing: encoder.c
• Main engine for encoding is encoder.c

– Variable definitions
– Error check arguments

• Packetsize, buffersize adjustments.
• Arguments/Parameters validy check.
• File size adjustments

– Create coding/bit/schedule matrices
– Loop starts

• File read, zero padding, pointer set
• Encoding
• Write the data/parities to files

– Create/write metadata

Encoding
Speed
(MB/sec)

Total Speed
(MB/sec)

Operations/timing: decoder.c
• Main engine for decoding is decoder.c

– Variable definitions
– Read metadata and error check
– Create coding/bit/schedule matrices
– Loop starts

• Determine erased files, readin available data
• Decoding
• Write the decoded data into a single output file.

Decoding
Speed
(MB/sec)

Total Speed
(MB/sec)

Inputs

• Inputfile: File that is input to encoder
• k: number of data files.
• m: number of coding files.
• coding technique: one of the following:

– reed_sol_van, reed_sol_r6_op, cauchy_orig,
cauchy_good, liberation, blaum_roth, liber8tion.

• w : word size.
• packetsize: architectural parameter(default=0 & see next page)

• buffersize: architectural parameter (default=0 & see next page)
– Must be a multiple of sizeof(long)*w*k*packetsize (packetsize is not 0), otherwise choose the least bigger

number that is a multiple of sizeof(long)*w*k*packetsize.

File size adjustment and blocksize

• Perform the following operations sequentially (packetsize is NOT 0):

• while filesize is NOT a multiple of sizeof(long)*w*k*packetsize
– Increment filesize

• while filesize is NOT a multiple of buffersize
– Increment filesize

• blocksize = filesize/k

Encoding a Big file…

• Methodology of
encoding: three
phases
– 1. read,
– 2. write
– 3.encode

blocks

Hardware structure

Main Memory

BUS

k x w x packetsize

bytes

Interaction

between

CPU caches

Cannot be

controlled

Through

J2.0

software.

Example run and the output: Original

• Suppose we have an input file input.txt
• Run:

– encoder input.txt 8 4 reed_sol_van 8 2048 5000000

• Output:
– Encode speed:

• Encoding (MB/sec): 1382.26
• En_Total (MB/sec): 296.35

– /Coding directory including 8 data files/4 parity files
and a metadata file:
• Input_k1.txt, input_k2.txt, …
• Input_m1.txt, input_m2.txt…
• Input_meta.txt

Strips encoding… (based on Plank’s
simulation study-not ours)

• Why different encoding methods quite different?
– Generator matrix design given k, m, w (particularly number of XORs)
– Buffersize, packetsize and s are tied together. If we set two of those, the remaining parameter is

known.

• Observations:
– Lower packet sizes have less tight XOR loops, but better cache behavior. Higher packetsizes

perform XORs over larger regions, but cause more cache misses.
– Optimal packetsize is where the code makes best use of L1 cache.

• Optimal packetsize decreases as any one of k,m,w increases.

+

RAM disk for improved I/O

• Check the available space in your RAM:
– free –g

• Create a folder to use as a mount point for your RAM disk:
– mkdir /mnt/ramdisk

• Use mount command to create a RAM disk
– mount –t [TYPE] –o size=[SIZE] [FSTYPE] [MOUNTPOINT]

– Ff

– [TYPE] : tmpfs/ramfs

– [SIZE] : SIZE of the RAMdisk

– [FSTYPE]: tmpfs/ramfs/ext4

• Example: mount –t tmpfs –o size=512m tmpfs /mnt/ramdisk
• Add the mount enrty into /etc/fstab to make the RAM disk

persist over reboots.

• Make sure you run “Jerasure” under this folder.

Changes in configuration/make files

• I took a design approach so as to make minimum changes to
the configuration and compilation process.

• Here is the list:
– Add a new flag in configure.ac: line 16 : ${CFLAGS='-g -O3 -

Wall -lpthread'}
– Let us assume we have a new script called encoderMT.c inside

the /Examples folder.
• Add encoderMT to bin_PROGRAMS in Examples/Makefile.am
• Add encoderMT_LDADD = $(LDADD) ../src/libtiming.a at the end of

the same file
• Also need to add the source file: encoderMT_SOURCES =

encoderMT.c

• Need to go through the same procedure for every file you
add to Jerasure.

Example run and the output: MT

• Suppose we have an input file input.txt
• Run:

– encoderMT2 input.txt 8 4 8 2048 5000000
– encoder_omp input.txt 8 4 8 2048 5000000

• Output:
– Encode speed:

• Encoding (MB/sec): 4252.88
• En_Total (MB/sec): 697.61

– /Coding directory including 8 data files/4 parity files and a metadata
file:
• Input_k1.txt, input_k2.txt, …
• Input_m1.txt, input_m2.txt…
• Input_meta.txt

• Decoder is pretty simple:
– decoder(decoderMT2, decoder_omp) [file_name]

Cluster Requirements for Data Protection

• Example: Distributed Storage Systems…OpenStack Swift, Ceph…

Load
Balancer

Proxy

Use (8,3) code.

Choose any 3 that are most responsive.

Decoding/forwarding Encoding/
Data
allocation

WRITE

READ

WRITE/READ requests on
A distributed system protected
By the erasure code such as
Jeasure.

Cluster Requirements for Data Protection:
Fault Tolerance

• Example: Distributed Storage Systems…OpenStack Swift, Ceph…

Load
Balancer

Proxy

Use (8,3) code.

Choose any 3 that are most responsive.

Decoding/forwarding Encoding/
Data
allocation

WRITE

READ

In case of failure of a node:
Degraded reads occur.

Cluster Requirements for Data Protection:
Cluster Data Repair

• Example: Distributed Storage Systems…OpenStack Swift, Ceph…

Load
Balancer

Proxy

Use (8,3) code.

Decoding/forwarding Encoding/
Data
allocation

In case of repair of a node:
Multiple data streams into free node
For exact data reconstruction.

Free node

Failed node needs to be repaired. 1
2

3

4

One active research area:
How to minimize this communication.

