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Motivation for Array Codes

Mainly used for burst error correction in communication systems and
storage systems.

Addresses some of the challenges in Cloud Storage.

Easy to move computation than data.

Required: Simple math.

Required: Flexibility.

Desired: Easy code constructions.
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Binary Array Codes

Linear codes where information/parity data are structured in a two
dimensional matrix array [1].
Considered over binary field for complexity.

Formal Definition [2],[3], (Wang, Paterson)

An [n, k, t, b] array code is a b × n two dimensional rate r = k/n binary linear
code C = [ai,j ]1≤i≤b,1≤j≤n in which the coding symbol ai,j ∈ {0, 1}l is a
weighted sum of a subset of source symbols I = {v1, . . . , vbk}, typically
structured as a b × k data matrix.

I can be reconstructed from any n − t columns of the binary array code
for t ≤ n − k.
– If the decoder is Belief Propagation (BP) algorithm and weighted sum is

simply XOR operation, we name it array BP-XOR codes.
– A t-erasure (column) correcting array BP-XOR code is Maximum Distance

Separable (MDS) if I can be reconstructed from k = n − t columns of C.
Extensively studied for burst error correction.

Examples

(t=2) EVENODD Code[4], RDP Code[5], X-Code[6], P-Code, H-Code,
D-Code, etc. (t=3) STAR [7] and TIP [8] Codes.
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Belief Propagation for Erasures

Algorithm begins decoding with degree-one coded symbol.
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Belief Propagation for Erasures

Corresponding coded symbols are updated with the decoded value.
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Belief Propagation for Erasures

All edges are removed from the recovered variable symbol.

We iterate until we recover all variable symbols.
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Belief Propagation for Erasures

We successfully decoded all the variable symbols.

Depending on the graph, the decoder could have ended prematurely.
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Issues w/ Exact array BP-XOR Codes I

Example codes are precisely defined for t = 2, t = 3. Not possible for all k
(usually a function of prime number p).
– Ex. RDP (k = p − 1), X-Code (k = p − 2) etc.

Also constructed for k = 2 (edge colored graph model) [3]. It is shown for
general (k, t) that existence of a code depends on the maximum symbol
degree i.e., maxi,j deg(ai,j) = σ.

Theorem 1.1 [3] (Wang)

The blocklength n of an [n, k, t, b] array BP-XOR code which has a maximum
symbol degree of σ < k + (k − 1)/(b − 1) is bounded above by

n ≤ k + σ − 1+
⌊
σ(σ − 1)(b − 1)
(k − σ)b + σ − 1

⌋
(1)

Examples

RDP Code (k = σ = p − 1), X-Code (k = σ = p − 2)

Corollary 1.2

For k = σ, we can simplify (1) to n ≤ kb + 1+max{k − 3, 0}
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Issues w/ Exact array BP-XOR Codes II

Corollary 1.2 shows that the upper bound in (1) is not tight.
For high degree MDS array BP-XOR codes with k ≥ σ2, the block length
n becomes independent of b.
Note that an [n, k, t, b] array code C over the alphabet {0, 1}l can also be
considered a linear code over the extension alphabet {0, 1}l

b

.
If we relax BP-decodability constraint, then a standard RS codes over the
finite field GF (2b) can be considered as an array code.
A big gap for the existence of MDS b × n array BP-XOR codes over
GF (2) and MDS linear codes over GF (2b).

Examples
UB on n for MDS array BP-XOR Codes with σ = 2 and large b. [3]

k 2 3 4 [4,∞]
n 2b + 1 4 5 k + 1

MAX n for [n, k] RS codes over GF (2b) [3]

k 2 3 4 5 [2b,∞]
n 2b + 1 2b + 2 2b + 1 2b + 2 k + 1
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Storage/Complexity Efficiency v.s. Flexibility

BIG PICTURE

An overview of existing codes and where AMDS array BP-XOR codes fit.
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Main Results I

For a given positive number b′ satisfying b′ > b, a [n, k, t, b, b′]
Asymptotically MDS (AMDS) array BP-XOR code Ca is a linear code with
i-th column (yi,1, . . . , yi,bi ) = (x1, . . . , xbk)Gi for a bk × bi generator
matrix Gi , i ∈ {1, . . . , n} such that b′ = (1/n)

∑
i bi . Therefore, the

generator matrix for Ca is given by the following matrix of size bk ×
∑

i bi ,

GCa = [G1|G2| . . . |Gn]. (2)

Theorem 2.1

Let Ca be a [n, k, t, b, b′] AMDS array BP-XOR code such that the maximum
coded node degree satisfies 2 < σ < (bk − 1)/(b′ − 1). Then, we have

n ≤ k + σ − 1+ (3)⌊
b(k(σ′ − σ) + (σ − 1)σ′)− (σ − 1)(3σ/2− 1)

b(k − σ′) + σ − 1

⌋
where σ′ = σ(1+ ε(b, n)), b′ = b(1+ ε(b, n)) and ε(b, n) is the coding
overhead.
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Main Results II

For exact MDS array BP-XOR codes, ε(b, n) = 0 i.e., σ′ = σ, b′ = b.

Tighter bound.

Definition 2.2

The coding overhead of an AMDS array BP-XOR codes satisfies
(1) For fixed k and rate r , as b →∞ we have vanishing coding overhead i.e.,

ε(b, n)→ 0.

(2) For fixed b and rate r , as k, n→∞ we have a diverging coding overhead i.e.,
ε(b, n)→∞.

Nice thing about this definition is that we can arrange ε(b, n)
(parameterize) such that the desired rate can be achieved.

Heavily depends on the characterization of ε(b, n).
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Mojette Transform Codes [9]

Illustration of projections of Mojette Transform coding (k=3, b=4, n = 3).
Mojette Transform: Discrete version of Radon transform.
Compute a linear set of projections from a rectangle grid at angles
specified by a couple of coprime integers (p, q) from a b × k discrete data
structure f : (z , l)→ N as shown above.
Let us generate n projections with parameters {(pi , qi ), 0 ≤ i ≤ n − 1}.
Projections can be treated as the columns of AMDS array BP-XOR codes.
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Encoder/Decoder

Each symbol (bin) of the i-th projection, based on (pi , qi ), can be
computed as given by the following compact formulation

M(pi ,qi )f (m + (b − 1)qiu(qi ) + (k − 1)piu(pi )) (4)

=
b−1⊕
z=0

k−1⊕
l=0

f (z , l)δm+zqi+lpi (5)

where
⊕

stands for Boolean XOR operation, u(.) is the discrete unit
function and δi is Kronecker delta function and m satisfies
−(b−1)qiu(qi )−(k−1)piu(pi ) ≤ m ≤ bi−(b−1)qiu(qi )−(k−1)piu(pi )−1
and the size of the i-th projection bi = |pi |(k − 1) + |qi |(b − 1) + 1.

Decoder is simple standard iterative BP algorithm.

Theorem 3.1 (Reconstruction theorem - Katz Criterion [10])

For a given AMDS array BP-XOR code defined by n projections with
parameters (pi , qi ) on a b× k data matrix, exact data reconstruction is possible
using iterative BP if

∑n−1
i=0 |pi | ≥ b or

∑n−1
i=0 |qi | ≥ k.
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computed as given by the following compact formulation

M(pi ,qi )f (m + (b − 1)qiu(qi ) + (k − 1)piu(pi )) (4)

=
b−1⊕
z=0

k−1⊕
l=0

f (z , l)δm+zqi+lpi (5)

where
⊕

stands for Boolean XOR operation, u(.) is the discrete unit
function and δi is Kronecker delta function and m satisfies
−(b−1)qiu(qi )−(k−1)piu(pi ) ≤ m ≤ bi−(b−1)qiu(qi )−(k−1)piu(pi )−1
and the size of the i-th projection bi = |pi |(k − 1) + |qi |(b − 1) + 1.

Decoder is simple standard iterative BP algorithm.

Theorem 3.1 (Reconstruction theorem - Katz Criterion [10])

For a given AMDS array BP-XOR code defined by n projections with
parameters (pi , qi ) on a b× k data matrix, exact data reconstruction is possible
using iterative BP if

∑n−1
i=0 |pi | ≥ b or

∑n−1
i=0 |qi | ≥ k.
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Parameter Selections

The maximum degree of the coded symbols plays a key role in the
attainable blocklength of the array BP-XOR codes.

Theorem 3.2

Let σi , i ∈ {1, 2, . . . , n} denote the maximum degree of the ith projection with
parameters (pi , qi ). We have σi = min{db/|pi |e, dk/|qi |e} and hence
σ = maxi{σi}.

Depending on the choices of (pi , qi ), the coding overhead and maximum
degree σ can change.

Construction 3.3

Let us consider the following choice of coprime integers,

qi = 1, pi ∈ T =

{
−
⌊
n − 1
2

⌋
, . . . ,−1, 0, 1, 2, . . . ,

⌈
n − 1
2

⌉}
(6)

where T is known as canonical enumeration of integers [11] that goes with the
name A007306 and satisfies gcd(pi , qi ) = 1 for i = 0, . . . , n − 1.

Construction 3.3 satisfies Katz criterion and for b � 1, we have σ = k.
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Overhead

Theorem 3.4

For Mojette transform code with parameters as given in Construction 3.3, for
b � 1, we have

ε(b, n) ≈ n(2− r)(nr − 1)
4b

(7)

where r = k/n is the fixed rate of the array BP-XOR code.

This overhead satisfies definition 2.2. Note k = σ has the least constraint
on the code length for any MDS array BP-XOR code.

Construction 3.5

Let us consider the following choice of coprime integers for n projections,
qi = qe > 0,

pi ∈ U =
{
d−n + 1eodd , · · · − 3,−1, 1, 3, . . . , dn − 1eodd

}
(8)

where qe is a positive even number, and d.eodd rounds to the next biggest odd
integer of the argument, respectively.

We can show that GCD(pi , qi ) = 1 and
k > σ = maxi{min{db/|pi |e, dk/|qi |e}} = dk/qee 39 / 48
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Overhead

Theorem 3.6

For Mojette transform code with parameters as given in construction 3.5, for
b � 1, we have

ε(b, n) ≈ dk/qee
kb

(
(k − 1)

(
n − dk/qee

2

)
+ (b − 1)qe + 1

)
− 1

where qe is a positive even number, and d.eodd rounds to the next biggest odd
integer of the argument, respectively.

We can find the explicit upper bound for the blocklength n using the
construction 3.5.

n ≤ k +
σdk/qee

kb

(
(k − 1)

(
n − dk/qee

2

)
+ (b − 1)qe + 1

)
− 1 (9)

Hard to visualize. Let us provide some numerical results.
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Rate 3/4 AMDS array BP-XOR Code

Choose qe = 2, b = 10000, code rates r ∈ {3/4, 1/2}. asym denotes
AMDS array BP-XOR codes based on Mojette Transform.
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Rate 1/2 AMDS array BP-XOR Code

Upper bounds on n as a function of k for b = 10000.
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Achievable rates

The upper bound on n depends on the coding overhead which is a
function of code rate.
For each assumed rate, we calculate the upper bound and then compute
the minimum code rate possible. i.e., region that lies above the curves are
possible rates.
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Results

As k gets large it becomes impossible to construct classical MDS array
BP-XOR codes with rate smaller than (almost) 1. (k = 10 to k = 1000 )

By relaxing the exact MDS constraint, we can improve the region of
possibilities for better achievability.

Note that these bounds can be quantified once the overhead expression is
available.

Overhead is a function of the code construction process and parameters.
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Conclusion

Array BP-XOR codes are attractive data protection schemes for
low-complexity and optimal reliability.

Exact constructions have limitations on the maximum block length (so on
minimum rate) when the coding symbol degree is particularly lower than
the data size.

This limitation can greatly be relaxed by extending the original optimal
class to asymptotically optimal class.

Demonstrated a code construction based on discrete geometry that
satisfies all the requirements of AMDS array BP-XOR code class.

Future Work: Other construction methodologies

Conjecture: Zigzag codes can be an alternative way of constructing AMDS array
BP-XOR codes.
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Thanks for your attention.
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