[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Asymptotically MDS Array BP-XOR Codes

ISIT 2018, Vail, CO, USA

Şuayb Ş. Arslan [∗]

∗ MEF University, Department of Computer Engineering

Maslak, Istanbul, Turkey

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

OUTLINE

1 INTRODUCTION - BACKGROUND

² [Asymptotically MDS Array BP-XOR Codes](#page-24-0)

³ A DISCRETE GEOMETRY CONSTRUCTION

⁴ [Numerical Results](#page-41-0)

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

MOTIVATION FOR ARRAY CODES

- Mainly used for burst error correction in communication systems and storage systems.
- Addresses some of the challenges in Cloud Storage.
	- Easy to move computation than data.
- Required: Simple math.
- Required: Flexibility.
- Desired: Easy code constructions.

[Introduction - Background](#page-2-0) [Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0)

Binary Array Codes

- Linear codes where information/parity data are structured in a two dimensional matrix array [\[1\]](#page-47-0).
- Considered over binary field for complexity.

- \bullet *I* can be reconstructed from any $n t$ columns of the binary array code for $t \leq n - k$.
	-
	-
- Extensively studied for burst error correction.

Binary Array Codes

- Linear codes where information/parity data are structured in a two dimensional matrix array [\[1\]](#page-47-0).
- Considered over binary field for complexity.

An [n, k, t, b] array code is a $b \times n$ two dimensional rate $r = k/n$ binary linear code $\mathcal{C}=[a_{i,j}]_{1\leq i\leq b, 1\leq j\leq n}$ in which the coding symbol $a_{i,j}\in\left\{ 0,1\right\} ^{I}$ is a weighted sum of a subset of source symbols $\mathcal{I} = \{v_1, \ldots, v_{bk}\}\$, typically structured as a $h \times k$ data matrix.

- \bullet *I* can be reconstructed from any $n t$ columns of the binary array code for $t \leq n - k$.
	-
	-
- Extensively studied for burst error correction.

Binary Array Codes

- Linear codes where information/parity data are structured in a two dimensional matrix array [\[1\]](#page-47-0).
- Considered over binary field for complexity.

FORMAL DEFINITION [\[2\]](#page-47-1), [\[3\]](#page-47-2), (WANG, PATERSON)

An [n, k, t, b] array code is a $b \times n$ two dimensional rate $r = k/n$ binary linear code $\mathcal{C}=[\mathsf{a}_{i,j}]_{1\leq i\leq b, 1\leq j\leq n}$ in which the coding symbol $\mathsf{a}_{i,j}\in\{0,1\}^l$ is a weighted sum of a subset of source symbols $\mathcal{I} = \{v_1, \ldots, v_{bk}\}\$, typically structured as a $h \times k$ data matrix.

- \bullet *I* can be reconstructed from any $n t$ columns of the binary array code for $t \leq n - k$.
	-
	-
- Extensively studied for burst error correction.

Binary Array Codes

- Linear codes where information/parity data are structured in a two dimensional matrix array [\[1\]](#page-47-0).
- Considered over binary field for complexity.

FORMAL DEFINITION [\[2\]](#page-47-1), [\[3\]](#page-47-2), (WANG, PATERSON)

An [n, k, t, b] array code is a $b \times n$ two dimensional rate $r = k/n$ binary linear code $\mathcal{C}=[\mathsf{a}_{i,j}]_{1\leq i\leq b, 1\leq j\leq n}$ in which the coding symbol $\mathsf{a}_{i,j}\in\{0,1\}^l$ is a weighted sum of a subset of source symbols $\mathcal{I} = \{v_1, \ldots, v_{bk}\}\$, typically structured as a $h \times k$ data matrix.

- \bullet *I* can be reconstructed from any $n t$ columns of the binary array code for $t \leq n - k$.
	- If the decoder is Belief Propagation (BP) algorithm and weighted sum is simply XOR operation, we name it array BP-XOR codes.
	- A t-erasure (column) correcting array BP-XOR code is Maximum Distance Separable (MDS) if $\mathcal I$ can be reconstructed from $k = n - t$ columns of $\mathcal C$.
- Extensively studied for burst error correction.

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Binary Array Codes

- Linear codes where information/parity data are structured in a two dimensional matrix array [\[1\]](#page-47-0).
- Considered over binary field for complexity.

FORMAL DEFINITION [\[2\]](#page-47-1), [\[3\]](#page-47-2), (WANG, PATERSON)

An [n, k, t, b] array code is a $b \times n$ two dimensional rate $r = k/n$ binary linear code $\mathcal{C}=[\mathsf{a}_{i,j}]_{1\leq i\leq b, 1\leq j\leq n}$ in which the coding symbol $\mathsf{a}_{i,j}\in\{0,1\}^l$ is a weighted sum of a subset of source symbols $\mathcal{I} = \{v_1, \ldots, v_{bk}\}\$, typically structured as a $h \times k$ data matrix.

- \bullet *I* can be reconstructed from any $n t$ columns of the binary array code for $t \leq n - k$.
	- If the decoder is Belief Propagation (BP) algorithm and weighted sum is simply XOR operation, we name it array BP-XOR codes.
	- A t-erasure (column) correcting array BP-XOR code is Maximum Distance Separable (MDS) if $\mathcal I$ can be reconstructed from $k = n - t$ columns of $\mathcal C$.
- Extensively studied for burst error correction.

EXAMPLES

(t=2) EVENODD Code[\[4\]](#page-47-3), RDP Code[\[5\]](#page-47-4), X-Code[\[6\]](#page-47-5), P-Code, H-Code, D-Code, etc. $(t=3)$ STAR [\[7\]](#page-47-6) and TIP [\[8\]](#page-47-7) Codes.

INTRODUCTION - BACKCROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) NUMERICAL RESULTS

BELIEF PROPAGATION FOR ERASURES

Algorithm begins decoding with degree-one coded symbol.

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) NUMERICAL RESULTS

BELIEF PROPAGATION FOR ERASURES

Corresponding coded symbols are updated with the decoded value.

INTRODUCTION - BACKCROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Belief Propagation for Erasures

- All edges are removed from the recovered variable symbol.
- We iterate until we recover all variable symbols.

INTRODUCTION - BACKGROUND ASYMPTOTICALLY MDS ARRAY BP-XOR CODES [A Discrete Geometry Construction](#page-30-0) NUMERICAL RESULTS

Belief Propagation for Erasures

INTRODUCTION - BACKGROUND ASYMPTOTICALLY MDS ARRAY BP-XOR CODES [A Discrete Geometry Construction](#page-30-0) NUMERICAL RESULTS

Belief Propagation for Erasures

INTRODUCTION - BACKCROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

BELIEF PROPAGATION FOR ERASURES

- We successfully decoded all the variable symbols.
- Depending on the graph, the decoder could have ended prematurely.

Issues w/ Exact array BP-XOR Codes I

- Example codes are precisely defined for $t = 2, t = 3$. Not possible for all k (usually a function of prime number p).
	- Ex. RDP ($k = p 1$), X-Code ($k = p 2$) etc.
- Also constructed for $k = 2$ (edge colored graph model) [\[3\]](#page-47-2). It is shown for general (k, t) that existence of a code depends on the maximum symbol degree i.e., max_{i,j} deg($a_{i,j}$) = σ .

$$
0 \leq k + \sigma - 1 + \left\lfloor \frac{\sigma(\sigma - 1)(b - 1)}{(k - \sigma)b + \sigma - 1} \right\rfloor \tag{1}
$$

RDP Code
$$
(k = \sigma = p - 1)
$$
, X-Code $(k = \sigma = p - 2)$

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Issues w/ Exact array BP-XOR Codes I

- Example codes are precisely defined for $t = 2, t = 3$. Not possible for all k (usually a function of prime number p).
	- Ex. RDP ($k = p 1$), X-Code ($k = p 2$) etc.
- Also constructed for $k = 2$ (edge colored graph model) [\[3\]](#page-47-2). It is shown for general (k, t) that existence of a code depends on the maximum symbol degree i.e., max_{i,j} deg $(a_{i,j}) = \sigma$.

The blocklength n of an $[n, k, t, b]$ array BP-XOR code which has a maximum symbol degree of $\sigma < k + (k-1)/(b-1)$ is bounded above by

$$
n \leq k + \sigma - 1 + \left\lfloor \frac{\sigma(\sigma - 1)(b - 1)}{(k - \sigma)b + \sigma - 1} \right\rfloor \tag{1}
$$

RDP Code
$$
(k = \sigma = p - 1)
$$
, X-Code $(k = \sigma = p - 2)$

For $k = \sigma$, we can simplify [\(1\)](#page-14-0) to $n \leq k + 1 + \max\{k - 3, 0\}$

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) **CONCLUSIONS**

Issues w/ Exact array BP-XOR Codes I

- Example codes are precisely defined for $t = 2, t = 3$. Not possible for all k (usually a function of prime number p).
	- Ex. RDP ($k = p 1$), X-Code ($k = p 2$) etc.
- Also constructed for $k = 2$ (edge colored graph model) [\[3\]](#page-47-2). It is shown for general (k, t) that existence of a code depends on the maximum symbol degree i.e., max_{i,j} deg($a_{i,j}$) = σ .

Theorem 1.1 [\[3\]](#page-47-2) (Wang)

The blocklength n of an $[n, k, t, b]$ array BP-XOR code which has a maximum symbol degree of $\sigma < k + (k-1)/(b-1)$ is bounded above by

$$
n \leq k + \sigma - 1 + \left\lfloor \frac{\sigma(\sigma - 1)(b - 1)}{(k - \sigma)b + \sigma - 1} \right\rfloor \tag{1}
$$

RDP Code
$$
(k = \sigma = p - 1)
$$
, X-Code $(k = \sigma = p - 2)$

For $k = \sigma$, we can simplify [\(1\)](#page-14-0) to $n \leq k + 1 + \max\{k - 3, 0\}$

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) **CONCLUSIONS**

Issues w/ Exact array BP-XOR Codes I

- Example codes are precisely defined for $t = 2, t = 3$. Not possible for all k (usually a function of prime number p).
	- Ex. RDP ($k = p 1$), X-Code ($k = p 2$) etc.
- Also constructed for $k = 2$ (edge colored graph model) [\[3\]](#page-47-2). It is shown for general (k, t) that existence of a code depends on the maximum symbol degree i.e., max_{i,j} deg($a_{i,j}$) = σ .

Theorem 1.1 [\[3\]](#page-47-2) (Wang)

The blocklength n of an $[n, k, t, b]$ array BP-XOR code which has a maximum symbol degree of $\sigma < k + (k-1)/(b-1)$ is bounded above by

$$
n \leq k + \sigma - 1 + \left\lfloor \frac{\sigma(\sigma - 1)(b - 1)}{(k - \sigma)b + \sigma - 1} \right\rfloor \tag{1}
$$

EXAMPLES

RDP Code
$$
(k = \sigma = p - 1)
$$
, X-Code $(k = \sigma = p - 2)$

For $k = \sigma$, we can simplify [\(1\)](#page-14-0) to $n \leq k + 1 + \max\{k - 3, 0\}$

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Issues w/ Exact array BP-XOR Codes I

- Example codes are precisely defined for $t = 2, t = 3$. Not possible for all k (usually a function of prime number p).
	- Ex. RDP ($k = p 1$), X-Code ($k = p 2$) etc.
- Also constructed for $k = 2$ (edge colored graph model) [\[3\]](#page-47-2). It is shown for general (k, t) that existence of a code depends on the maximum symbol degree i.e., max_{i,j} deg($a_{i,j}$) = σ .

Theorem 1.1 [\[3\]](#page-47-2) (Wang)

The blocklength n of an $[n, k, t, b]$ array BP-XOR code which has a maximum symbol degree of $\sigma < k + (k-1)/(b-1)$ is bounded above by

$$
n \leq k + \sigma - 1 + \left\lfloor \frac{\sigma(\sigma - 1)(b - 1)}{(k - \sigma)b + \sigma - 1} \right\rfloor \tag{1}
$$

EXAMPLES

RDP Code
$$
(k = \sigma = p - 1)
$$
, X-Code $(k = \sigma = p - 2)$

Corollary 1.2

For $k = \sigma$, we can simplify [\(1\)](#page-14-0) to $n \leq kb + 1 + \max\{k - 3, 0\}$

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Issues w/ Exact array BP-XOR Codes II

- Corollary 1.2 shows that the upper bound in (1) is not tight.
- For high degree MDS array BP-XOR codes with $k \ge \sigma^2$, the block length n becomes independent of b.
- Note that an $[n, k, t, b]$ array code $\mathcal C$ over the alphabet $\{0, 1\}^l$ can also be considered a linear code over the extension alphabet $\left\{0,1\right\}^{l^b}.$
- If we relax BP-decodability constraint, then a standard RS codes over the finite field $GF(2^b)$ can be considered as an array code.
- A big gap for the existence of MDS $b \times n$ array BP-XOR codes over $GF(2)$ and MDS linear codes over $GF(2^b)$.

		x ÷
ノーエ --		ı

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) **CONCLUSIONS**

Issues w/ Exact array BP-XOR Codes II

- Corollary 1.2 shows that the upper bound in (1) is not tight.
- For high degree MDS array BP-XOR codes with $k \ge \sigma^2$, the block length n becomes independent of b.
- Note that an $[n, k, t, b]$ array code $\mathcal C$ over the alphabet $\{0, 1\}^l$ can also be considered a linear code over the extension alphabet $\left\{0,1\right\}^{l^b}.$
- If we relax BP-decodability constraint, then a standard RS codes over the finite field $GF(2^b)$ can be considered as an array code.
- A big gap for the existence of MDS $b \times n$ array BP-XOR codes over $GF(2)$ and MDS linear codes over $GF(2^b)$.

W			4.00
	$\left\vert \left\langle \cdot\right\rangle \right\vert=\left\vert \cdot\right\vert_{\left\langle \cdot\right\rangle \left\langle \cdot\right\vert }\right\vert$ --	h. and a	ı

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) **CONCLUSIONS**

Issues w/ Exact array BP-XOR Codes II

- Corollary 1.2 shows that the upper bound in (1) is not tight.
- For high degree MDS array BP-XOR codes with $k \ge \sigma^2$, the block length n becomes independent of b.
- Note that an $[n, k, t, b]$ array code $\mathcal C$ over the alphabet $\{0, 1\}^l$ can also be considered a linear code over the extension alphabet $\left\{0,1\right\}^{l^b}.$
- If we relax BP-decodability constraint, then a standard RS codes over the finite field $GF(2^b)$ can be considered as an array code.
- A big gap for the existence of MDS $b \times n$ array BP-XOR codes over $GF(2)$ and MDS linear codes over $GF(2^b)$.

W			4.00
I	Service Control \sim \sim a.	and a	J. v

INTRODUCTION - BACKGROUND [Asymptotically MDS Array BP-XOR Codes](#page-24-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

Issues w/ Exact array BP-XOR Codes II

- Corollary 1.2 shows that the upper bound in (1) is not tight.
- For high degree MDS array BP-XOR codes with $k \ge \sigma^2$, the block length n becomes independent of b.
- Note that an $[n, k, t, b]$ array code $\mathcal C$ over the alphabet $\{0, 1\}^l$ can also be considered a linear code over the extension alphabet $\left\{0,1\right\}^{l^b}.$
- If we relax BP-decodability constraint, then a standard RS codes over the finite field $GF(2^b)$ can be considered as an array code.
- A big gap for the existence of MDS $b \times n$ array BP-XOR codes over $GF(2)$ and MDS linear codes over $GF(2^b)$.

EXAMPLES

UB on *n* for MDS array BP-XOR Codes with $\sigma = 2$ and large *b*. [\[3\]](#page-47-2)

MAX n for $[n, k]$ RS codes over $GF(2^b)$ [\[3\]](#page-47-2)

INTRODUCTION - BACKGROUND ASYMPTOTICALLY MDS ARRAY BP-XOR CODES A DISCRETE GEOMETRY CONSTRUCTION NUMERICAL RESULTS [Conclusions](#page-45-0)

STORAGE/COMPLEXITY EFFICIENCY V.S. FLEXIBILITY

BIG PICTURE

An overview of existing codes and where AMDS array BP-XOR codes fit.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) **CONCLUSIONS**

MAIN RESULTS I

For a given positive number b' satisfying $b' > b$, a $[n, k, t, b, b']$ Asymptotically MDS (AMDS) array BP-XOR code C^a is a linear code with *i*-th column $(y_{i,1},...,y_{i,b_i}) = (x_1,...,x_{bk})G_i$ for a $bk \times b_i$ generator matrix $G_i, i \in \{1, ..., n\}$ such that $b' = (1/n) \sum_i b_i$. Therefore, the generator matrix for \mathcal{C}^{a} is given by the following matrix of size b k $\times\sum_{i}b_{i},$

$$
G_{\mathcal{C}^a} = [G_1 | G_2 | \dots | G_n]. \tag{2}
$$

Theorem 2.1

Let C^a be a $[n, k, t, b, b']$ AMDS array BP-XOR code such that the maximum coded node degree satisfies $2 < \sigma < (bk-1)/(b'-1)$. Then, we have

$$
n \leq k + \sigma - 1 + \qquad (3)
$$

$$
\left\lfloor \frac{b(k(\sigma' - \sigma) + (\sigma - 1)\sigma') - (\sigma - 1)(3\sigma/2 - 1)}{b(k - \sigma') + \sigma - 1} \right\rfloor
$$

where $\sigma' = \sigma(1 + \epsilon(b, n))$, $b' = b(1 + \epsilon(b, n))$ and $\epsilon(b, n)$ is the coding overhead.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0)

MAIN RESULTS II

For exact MDS array BP-XOR codes, $\epsilon(b, n) = 0$ i.e., $\sigma' = \sigma$, $b' = b$.

• Tighter bound.

- Nice thing about this definition is that we can arrange $\epsilon(b, n)$ (parameterize) such that the desired rate can be achieved.
- Heavily depends on the characterization of $\epsilon(b, n)$.

MAIN RESULTS II

- For exact MDS array BP-XOR codes, $\epsilon(b, n) = 0$ i.e., $\sigma' = \sigma$, $b' = b$.
- Tighter bound.

-
- - Nice thing about this definition is that we can arrange $\epsilon(b, n)$ (parameterize) such that the desired rate can be achieved.
	- Heavily depends on the characterization of $\epsilon(b, n)$.

MAIN RESULTS II

- For exact MDS array BP-XOR codes, $\epsilon(b, n) = 0$ i.e., $\sigma' = \sigma$, $b' = b$.
- Tighter bound.

DEFINITION 2.2

- (1) For fixed k and rate r, as $b \to \infty$ we have vanishing coding overhead i.e., $\epsilon(b, n) \rightarrow 0.$
- (2) For fixed b and rate r, as $k, n \rightarrow \infty$ we have a diverging coding overhead i.e., $\epsilon(b, n) \rightarrow \infty$.
	- Nice thing about this definition is that we can arrange $\epsilon(b, n)$ (parameterize) such that the desired rate can be achieved.
	- Heavily depends on the characterization of $\epsilon(b, n)$.

MAIN RESULTS II

- For exact MDS array BP-XOR codes, $\epsilon(b, n) = 0$ i.e., $\sigma' = \sigma$, $b' = b$.
- Tighter bound.

DEFINITION 2.2

- (1) For fixed k and rate r, as $b \to \infty$ we have vanishing coding overhead i.e., $\epsilon(b, n) \rightarrow 0.$
- (2) For fixed b and rate r, as $k, n \rightarrow \infty$ we have a diverging coding overhead i.e., $\epsilon(b, n) \to \infty$.
	- Nice thing about this definition is that we can arrange $\epsilon(b, n)$ (parameterize) such that the desired rate can be achieved.
	- Heavily depends on the characterization of $\epsilon(b, n)$.

MAIN RESULTS II

- For exact MDS array BP-XOR codes, $\epsilon(b, n) = 0$ i.e., $\sigma' = \sigma$, $b' = b$.
- Tighter bound.

DEFINITION 2.2

- (1) For fixed k and rate r, as $b \to \infty$ we have vanishing coding overhead i.e., $\epsilon(b, n) \rightarrow 0.$
- (2) For fixed b and rate r, as $k, n \rightarrow \infty$ we have a diverging coding overhead i.e., $\epsilon(b, n) \to \infty$.
	- Nice thing about this definition is that we can arrange $\epsilon(b, n)$ (parameterize) such that the desired rate can be achieved.
	- Heavily depends on the characterization of $\epsilon(b, n)$.

MOJETTE TRANSFORM CODES [\[9\]](#page-47-8)

Illustration of projections of Mojette Transform coding $(k=3, b=4, n = 3)$.

- Mojette Transform: Discrete version of Radon transform.
- Compute a linear set of projections from a rectangle grid at angles specified by a couple of coprime integers (p, q) from a $b \times k$ discrete data structure $f : (z, l) \rightarrow \mathbb{N}$ as shown above.

• Let us generate *n* projections with parameters $\{(p_i, q_i), 0 \le i \le n-1\}$.

Projections can be treated as the columns of AMDS array BP-XOR codes.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) CONCLUSIONS

MOJETTE TRANSFORM CODES [\[9\]](#page-47-8)

Illustration of projections of Mojette Transform coding $(k=3, b=4, n = 3)$.

- Mojette Transform: Discrete version of Radon transform.
- Compute a linear set of projections from a rectangle grid at angles specified by a couple of coprime integers (p, q) from a $b \times k$ discrete data structure $f : (z, l) \rightarrow \mathbb{N}$ as shown above.

• Let us generate *n* projections with parameters $\{(p_i, q_i), 0 \le i \le n-1\}$.

Projections can be treated as the columns of AMDS array BP-XOR codes.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) CONCLUSIONS

MOJETTE TRANSFORM CODES [\[9\]](#page-47-8)

Illustration of projections of Mojette Transform coding $(k=3, b=4, n = 3)$.

- Mojette Transform: Discrete version of Radon transform.
- Compute a linear set of projections from a rectangle grid at angles specified by a couple of coprime integers (p, q) from a $b \times k$ discrete data structure $f : (z, l) \rightarrow \mathbb{N}$ as shown above.
- Let us generate *n* projections with parameters $\{(p_i, q_i), 0 \le i \le n-1\}$.
- Projections can be treated as the columns of AMDS array BP-XOR codes.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0) **CONCLUSIONS**

Encoder/Decoder

• Each symbol (bin) of the *i*-th projection, based on (p_i, q_i) , can be computed as given by the following compact formulation

$$
M_{(p_i,q_i)}f(m+(b-1)q_iu(q_i)+(k-1)p_iu(p_i)) \qquad (4)
$$

$$
= \bigoplus_{z=0}^{b-1} \bigoplus_{l=0}^{k-1} f(z,l) \delta_{m+zq_i+l\rho_i} \tag{5}
$$

where \bigoplus stands for Boolean XOR operation, $u(.)$ is the discrete unit function and δ_i is Kronecker delta function and m satisfies $-(b-1)q_iu(q_i)-(k-1)p_iu(p_i) \leq m \leq b_i-(b-1)q_iu(q_i)-(k-1)p_iu(p_i)-1$ and the size of the *i*-th projection $b_i = |p_i|(k-1) + |q_i|(b-1) + 1$.

Decoder is simple standard iterative BP algorithm.

Encoder/Decoder

• Each symbol (bin) of the *i*-th projection, based on (p_i, q_i) , can be computed as given by the following compact formulation

$$
M_{(p_i,q_i)}f(m+(b-1)q_iu(q_i)+(k-1)p_iu(p_i))\qquad \qquad (4)
$$

$$
=\bigoplus_{z=0}^{b-1}\bigoplus_{l=0}^{k-1}f(z,l)\delta_{m+zq_i+l\rho_i}\qquad \qquad (5)
$$

where \bigoplus stands for Boolean XOR operation, $u(.)$ is the discrete unit function and δ_i is Kronecker delta function and m satisfies $-(b-1)q_iu(q_i)-(k-1)p_iu(p_i) \leq m \leq b_i-(b-1)q_iu(q_i)-(k-1)p_iu(p_i)-1$ and the size of the *i*-th projection $b_i = |p_i|(k-1) + |q_i|(b-1) + 1$.

Decoder is simple standard iterative BP algorithm.

THEOREM 3.1 (RECONSTRUCTION THEOREM - KATZ CRITERION $[10]$)

For a given AMDS array BP-XOR code defined by n projections with parameters (p_i, q_i) on a $b \times k$ data matrix, exact data reconstruction is possible using iterative BP if $\sum_{i=0}^{n-1} |p_i| \geq b$ or $\sum_{i=0}^{n-1} |q_i| \geq k$.

PARAMETER SELECTIONS

The maximum degree of the coded symbols plays a key role in the attainable blocklength of the array BP-XOR codes.

Theorem 3.2

Let $\sigma_i, i \in \{1, 2, ..., n\}$ denote the maximum degree of the *i*th projection with parameters (p_i, q_i) . We have $\sigma_i = \min\{ \lceil b/|p_i| \rceil, \lceil k/|q_i| \rceil \}$ and hence $\sigma = \max_i {\{\sigma_i\}}$.

• Depending on the choices of (p_i, q_i) , the coding overhead and maximum degree σ can change.

$$
q_i=1, p_i\in \mathfrak{T}=\left\{-\left\lfloor \frac{n-1}{2}\right\rfloor,\ldots,-1,0,1,2,\ldots,\left\lceil \frac{n-1}{2}\right\rceil \right\}\qquad (6)
$$

• Construction 3.3 satisfies Katz criterion and for $b \gg 1$, we have $\sigma = k$.

PARAMETER SELECTIONS

The maximum degree of the coded symbols plays a key role in the attainable blocklength of the array BP-XOR codes.

Theorem 3.2

Let $\sigma_i, i \in \{1, 2, \ldots, n\}$ denote the maximum degree of the *i*th projection with parameters (p_i, q_i) . We have $\sigma_i = \min\{ \lceil b/|p_i| \rceil, \lceil k/|q_i| \rceil \}$ and hence $\sigma = \max_i {\{\sigma_i\}}$.

• Depending on the choices of (p_i, q_i) , the coding overhead and maximum degree σ can change.

Let us consider the following choice of coprime integers,

$$
q_i = 1, p_i \in \mathfrak{T} = \left\{-\left\lfloor \frac{n-1}{2} \right\rfloor, \ldots, -1, 0, 1, 2, \ldots, \left\lceil \frac{n-1}{2} \right\rceil \right\} \tag{6}
$$

where $\mathfrak T$ is known as canonical enumeration of integers [\[11\]](#page-47-10) that goes with the name A007306 and satisfies $gcd(p_i, q_i) = 1$ for $i = 0, \ldots, n - 1$.

 \bullet Construction 3.3 satisfies Katz criterion and for $b\gg 1$, we have $\sigma=k$.

ASYMPTOTICALLY MDS ARRAY BP-YOR A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

PARAMETER SELECTIONS

The maximum degree of the coded symbols plays a key role in the attainable blocklength of the array BP-XOR codes.

Theorem 3.2

Let $\sigma_i, i \in \{1, 2, \ldots, n\}$ denote the maximum degree of the *i*th projection with parameters (p_i, q_i) . We have $\sigma_i = \min\{ \lceil b/|p_i| \rceil, \lceil k/|q_i| \rceil \}$ and hence $\sigma = \max_i {\{\sigma_i\}}$.

• Depending on the choices of (p_i, q_i) , the coding overhead and maximum degree σ can change.

CONSTRUCTION 3.3

Let us consider the following choice of coprime integers,

$$
q_i=1, p_i \in \mathfrak{T}=\left\{-\left\lfloor \frac{n-1}{2} \right\rfloor, \ldots, -1, 0, 1, 2, \ldots, \left\lceil \frac{n-1}{2} \right\rceil \right\} \qquad (6)
$$

where $\mathfrak T$ is known as canonical enumeration of integers [\[11\]](#page-47-10) that goes with the name A007306 and satisfies $gcd(p_i, q_i) = 1$ for $i = 0, \ldots, n - 1$.

• Construction 3.3 satisfies Katz criterion and for $b \gg 1$, we have $\sigma = k$.

OVERHEAD

Theorem 3.4

For Mojette transform code with parameters as given in Construction 3.3, for $b \gg 1$, we have $\epsilon(b, n) \approx \frac{n(2 - r)(nr - 1)}{4h}$ 4b (7)

where $r = k/n$ is the fixed rate of the array BP-XOR code.

• This overhead satisfies definition 2.2. Note $k = \sigma$ has the least constraint on the code length for any MDS array BP-XOR code.

Let us consider the following choice of coprime integers for *n* projections, $p_i \in \mathfrak{U} = \left\{\lceil -n + 1 \rceil_{\textit{odd}}, \cdots -3, -1, 1, 3, \ldots, \lceil n-1 \rceil_{\textit{odd}} \right\}$

where q_e is a positive even number, and $\lceil \cdot \rceil_{odd}$ rounds to the next biggest odd integer of the argument, respectively.

\n- We can show that
$$
GCD(p_i, q_i) = 1
$$
 and $k > \sigma = \max_i \{\min\{\lceil b/|p_i| \rceil, \lceil k/|q_i| \rceil\}\} = \lceil k/q_e \rceil$
\n

OVERHEAD

Theorem 3.4

For Mojette transform code with parameters as given in Construction 3.3, for $b \gg 1$, we have $\epsilon(b, n) \approx \frac{n(2 - r)(nr - 1)}{4h}$ 4b (7)

where $r = k/n$ is the fixed rate of the array BP-XOR code.

• This overhead satisfies definition 2.2. Note $k = \sigma$ has the least constraint on the code length for any MDS array BP-XOR code.

CONSTRUCTION 3.5

Let us consider the following choice of coprime integers for *n* projections,

$$
q_i = q_e > 0,\n p_i \in \mathfrak{U} = \{[-n+1]_{odd}, \cdots -3, -1, 1, 3, \ldots, [n-1]_{odd}\}
$$
\n(8)

where q_e is a positive even number, and $\lceil \cdot \rceil_{odd}$ rounds to the next biggest odd integer of the argument, respectively.

• We can show that $GCD(p_i, q_i) = 1$ and $k > \sigma = \max_i \{ \min\{ \lceil b/|p_i| \rceil, \lceil k/|q_i| \rceil \} \} = \lceil k/q_e \rceil$

OVERHEAD

Theorem 3.6

For Mojette transform code with parameters as given in construction 3.5, for $b \gg 1$, we have

$$
\epsilon(b,n) \approx \frac{\lceil k/q_e \rceil}{kb} \left((k-1)\left(n-\frac{\lceil k/q_e \rceil}{2}\right) + (b-1)q_e + 1 \right) - 1
$$

where q_e is a positive even number, and $\lceil \cdot \rceil_{odd}$ rounds to the next biggest odd integer of the argument, respectively.

 \bullet We can find the explicit upper bound for the blocklength n using the construction 3.5.

$$
n \leq k + \frac{\sigma \lceil k/q_e \rceil}{kb} \left((k-1)\left(n - \frac{\lceil k/q_e \rceil}{2}\right) + (b-1)q_e + 1 \right) - 1 \qquad (9)
$$

Hard to visualize. Let us provide some numerical results.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION [Numerical Results](#page-41-0) CONCLUSIONS

RATE 3/4 AMDS ARRAY BP-XOR CODE

• Choose $q_e = 2$, $b = 10000$, code rates $r \in \{3/4, 1/2\}$. asym denotes AMDS array BP-XOR codes based on Mojette Transform.

RATE $1/2$ AMDS ARRAY BP-XOR CODE

• Upper bounds on *n* as a function of *k* for $b = 10000$.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

ACHIEVABLE RATES

- \bullet The upper bound on *n* depends on the coding overhead which is a function of code rate.
- For each assumed rate, we calculate the upper bound and then compute the minimum code rate possible. i.e., region that lies above the curves are possible rates

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

RESULTS

- As k gets large it becomes impossible to construct classical MDS array BP-XOR codes with rate smaller than (almost) 1. ($k = 10$ to $k = 1000$)
- By relaxing the exact MDS constraint, we can improve the region of possibilities for better achievability.
- Note that these bounds can be quantified once the overhead expression is available.
- Overhead is a function of the code construction process and parameters.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [Numerical Results](#page-41-0) [Conclusions](#page-45-0)

CONCLUSION

- Array BP-XOR codes are attractive data protection schemes for low-complexity and optimal reliability.
- Exact constructions have limitations on the maximum block length (so on minimum rate) when the coding symbol degree is particularly lower than the data size.
- This limitation can greatly be relaxed by extending the original optimal class to asymptotically optimal class.
- Demonstrated a code construction based on discrete geometry that satisfies all the requirements of AMDS array BP-XOR code class.

Future Work: Other construction methodologies

Conjecture: Zigzag codes can be an alternative way of constructing AMDS array BP-XOR codes.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) A DISCRETE GEOMETRY CONSTRUCTION NUMERICAL RESULTS **CONCLUSIONS**

Thanks for your attention.

[Asymptotically MDS Array BP-XOR Codes](#page-24-0) [A Discrete Geometry Construction](#page-30-0) [Numerical Results](#page-41-0) **CONCLUSIONS**

REFERENCES

- 晶 M. Blaum and R. M. Roth, "New Array Codes for Multiple Phased Burst Correction," IEEE Trans. on Information Theory, 339(1):66-77, 1993.
- 晶 Y. Wang, "Array BP-XOR codes for reliable cloud storage systems," In Proc. of IEEE ISIT, pp. 326–330, 2013.
- 晶 M. B. Paterson, D. R. Stinson and Y. Wang, "On Encoding Symbol Degrees of Array BP-XOR Codes," Cryptography and Communications, vol. 8, no. 1, pp. 19–32, 2016.
- F M. Blaum, J. Brady, J. Bruck and J. Menon, "EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures," IEEE Trans. on Computers, 44(2), 192-202, Feb. 1995.
- 螶 P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar, "Row-diagonal parity for double disk failure correction," in Proc. of the 3rd USENIX Conf. on File and Storage Technologies (FAST), 2004, pp. 1–14.
- F.
	- L. Xu and J. Bruck, "X-Code: MDS Array Codes with Optimal Encoding," IEEE Trans. on Information Theory, 45(1), 272-276, Jan., 1999.
	- C. Huang and L. Xu, "STAR: An efficient coding scheme for correcting