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ROUND

MOTIVATION FOR ARRAY CODES

e Mainly used for burst error correction in communication systems and
storage systems.

o Addresses some of the challenges in Cloud Storage.

o Easy to move computation than data.

Required: Simple math.

Required: Flexibility.

o Desired: Easy code constructions.
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Separable (MDS) if Z can be reconstructed from k = n — t columns of C.
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BINARY ARRAY CODES

@ Linear codes where information/parity data are structured in a two
dimensional matrix array [1].
o Considered over binary field for complexity.

ForMAL DEeFINITION [2],[3], (WANG, PATERSON)

An [n, k, t, b] array code is a b X n two dimensional rate r = k/n binary linear
code C = [aijli<i<b1<j<n in which the coding symbol a;; € {0,1}' is a
weighted sum of a subset of source symbols Z = {vi, ..., v}, typically
structured as a b X k data matrix.

@ 7 can be reconstructed from any n — t columns of the binary array code
fort <n-—k.
If the decoder is Belief Propagation (BP) algorithm and weighted sum is
simply XOR operation, we name it array BP-XOR codes.
— A t-erasure (column) correcting array BP-XOR code is Maximum Distance
Separable (MDS) if Z can be reconstructed from k = n — t columns of C.

o Extensively studied for burst error correction.

(t=2) EVENODD Code[4], RDP Code[5], X-Code[6], P-Code, H-Code,
D-Code, etc. (t=3) STAR [7] and TIP [8] Codes.
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BELIEF PROPAGATION FOR ERASURES

o Algorithm begins decoding with degree-one coded symbol.
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o Corresponding coded symbols are updated with the decoded value.
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BELIEF PROPAGATION FOR ERASURES

o All edges are removed from the recovered variable symbol.

o We iterate until we recover all variable symbols.

E] variable symbols

Q coded symbols

O recevied/recovered

used to recover

D unrecovered
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BELIEF PROPAGATION FOR ERASURES

o We successfully decoded all the variable symbols.

o Depending on the graph, the decoder could have ended prematurely.

D G D G variable symbols

O O O O () cmasymons

O recevied/recovered

used to recover

unrecovered
BP-DECODER SUCCESS D
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o Example codes are precisely defined for t = 2,t = 3. Not possible for all k
(usually a function of prime number p).
— Ex. RDP (k = p—1), X-Code (k = p — 2) etc.
@ Also constructed for k = 2 (edge colored graph model) [3]. It is shown for
general (k, t) that existence of a code depends on the maximum symbol

degree i.e., max; ; deg(ai ;) = o.

The blocklength n of an [n, k, t, b] array BP-XOR code which has a maximum
symbol degree of o < k + (k —1)/(b — 1) is bounded above by

o(c —1)(b—1) J (1)
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(usually a function of prime number p).
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general (k, t) that existence of a code depends on the maximum symbol
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o Example codes are precisely defined for t = 2,t = 3. Not possible for all k
(usually a function of prime number p).
— Ex. RDP (k = p—1), X-Code (k = p — 2) etc.
@ Also constructed for k = 2 (edge colored graph model) [3]. It is shown for
general (k, t) that existence of a code depends on the maximum symbol

degree i.e., max; ; deg(ai ;) = o.

The blocklength n of an [n, k, t, b] array BP-XOR code which has a maximum
symbol degree of o < k + (k —1)/(b — 1) is bounded above by

o(c —1)(b—1) J (1)

<kto-1
o +{(k—a)b+a—1

RDP Code (k =0 = p—1), X-Code (k=0 =p—2)

For k = o, we can simplify (1) to n < kb+ 1 + max{k — 3,0}
© /48
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Issues w/ ExXAcT ARRAY BP-XOR CoDES 11

@ Corollary 1.2 shows that the upper bound in (1) is not tight.
@ For high degree MDS array BP-XOR codes with k > o2, the block length
n becomes independent of b.
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Corollary 1.2 shows that the upper bound in (1) is not tight.

For high degree MDS array BP-XOR codes with k > o2, the block length
n becomes independent of b.

Note that an [n, k, t, b] array code C over the alphabet {0,1}' can also be

considered a linear code over the extension alphabet {0, l}lb.
o If we relax BP-decodability constraint, then a standard RS codes over the
finite field GF(2°) can be considered as an array code.
A big gap for the existence of MDS b x n array BP-XOR codes over
GF(2) and MDS linear codes over GF(2").

ExAMPLES

UB on n for MDS array BP-XOR Codes with o = 2 and large b. [3]
k| 2 3|4 | [4,0]
n|2b+1 |4 |5| k+1

MAX n for [n, k] RS codes over GF(2°) [3]
2 3 4 5 [2°,00]
2P r1 |22 +2 |22 +1 |22 +2 ] k+1
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STORAGE/COMPLEXITY EFFICIENCY V.

BIG PICTURE

Flexibility N N
Complexity construction
BP-Decodable . Matrix Inversion .- flexibility
Storage 50
Efficiency .

Pl -
RS Codes !

S . N
. ,"/iMDS array
.27\ BPXOR |

Near MDS

An overview of existing codes and where AMDS array BP-XOR codes fit.
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MAIN REsSuLTS 1

o For a given positive number b’ satisfying b’ > b, a [n, k, t, b, b']
Asymptotically MDS (AMDS) array BP-XOR code C? is a linear code with
i-th column (yi1,...,¥i5) = (x1,...,xs)Gj for a bk x b; generator
matrix G;,i € {1,...,n} such that b’ = (1/n) Y, b;. Therefore, the
generator matrix for C? is given by the following matrix of size bk x >, b;,

Ges = [G1| G| . .. |Gl (2)

THEOREM 2.1

Let C? be a [n, k, t, b, b'] AMDS array BP-XOR code such that the maximum
coded node degree satisfies 2 < o < (bk — 1)/(b" — 1). Then, we have

n < k+o-1+ 3)
\‘b(k(a' — o)+ (0 —1)o') — (6 —1)(30/2 — 1)J
bk—0')+0—1

where 0’ = (1 + €(b, n)), b’ = b(1 + €(b, n)) and €(b, n) is the coding
overhead. y

25 /48
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o For exact MDS array BP-XOR codes, ¢(b,n) =0i.e., o' =0, b’ = b.
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o For exact MDS array BP-XOR codes, ¢(b,n) =0i.e., o' =0, b’ = b.
o Tighter bound.
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The coding overhead of an AMDS array BP-XOR codes satisfies
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(2) For fixed b and rate r, as k, n — oo we have a diverging coding overhead i.e.,
e(b, n) — co.
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MAIN REsvuLTs 11

o For exact MDS array BP-XOR codes, ¢(b,n) =0i.e., o' =0, b’ = b.
o Tighter bound.

The coding overhead of an AMDS array BP-XOR codes satisfies

(1) For fixed k and rate r, as b — oo we have vanishing coding overhead i.e.,
e(b,n) — 0.

(2) For fixed b and rate r, as k, n — oo we have a diverging coding overhead i.e.,
e(b, n) — co.

@ Nice thing about this definition is that we can arrange ¢(b, n)
(parameterize) such that the desired rate can be achieved.

@ Heavily depends on the characterization of ¢(b, n).
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MOJETTE TRANSFORM CODES |[9]

projection
direction

(0,1)

Illustration of projections of Mojette Transform coding (k=3, b=4, n = 3).
o Mojette Transform: Discrete version of Radon transform.
o Compute a linear set of projections from a rectangle grid at angles
specified by a couple of coprime integers (p, ) from a b x k discrete data

structure f : (z,/) — N as shown above.
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MOJETTE TRANSFORM CODES |[9]

projection
q;  direction

(0,1)

Illustration of projections of Mojette Transform coding (k=3, b=4, n = 3).

o Mojette Transform: Discrete version of Radon transform.

o Compute a linear set of projections from a rectangle grid at angles
specified by a couple of coprime integers (p, ) from a b x k discrete data
structure f : (z,/) — N as shown above.

o Let us generate n projections with parameters {(p;,qi),0 <i<n—1}.

o Projections can be treated as the columns of AMDS array BP-XOR codes.
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ENCODER/DECODER

@ Each symbol (bin) of the i-th projection, based on (pj, gi), can be
computed as given by the following compact formulation

Mip;,q f(m + (b — 1)qiu(qi) + (k — 1)pju(pi)) (4)
b—1 k—1

= @ @ (2, 1)0m-2q;-+1p; (5)
z=0 /=0

where €D stands for Boolean XOR operation, u(.) is the discrete unit
function and ¢; is Kronecker delta function and m satisfies
—(b=1)qiu(qi)—(k=1)piu(pi) < m < bi—(b—1)qiu(q;)—(k—1)piu(p;)—1
and the size of the i-th projection b; = |pi|(k — 1) + |qi|(b— 1) + 1.
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ENCODER/DECODER

@ Each symbol (bin) of the i-th projection, based on (pj, gi), can be
computed as given by the following compact formulation

Mip;,q f(m + (b — 1)qiu(qi) + (k — 1)pju(pi)) (4)
b—1 k—1

= @ @ (2, 1)0m-2q;-+1p; (5)
z=0 /=0

where €D stands for Boolean XOR operation, u(.) is the discrete unit
function and ¢; is Kronecker delta function and m satisfies
—(b=1)qiu(qi)—(k=1)piu(pi) < m < bi—(b—1)qiu(q;)—(k—1)piu(p;)—1
and the size of the i-th projection b; = |pi|(k — 1) + |qi|(b— 1) + 1.

o Decoder is simple standard iterative BP algorithm.

THEOREM 3.1 (RECONSTRUCTION THEOREM - KATZ CRITERION [10])

For a given AMDS array BP-XOR code defined by n projections with
parameters (pi, gi) on a b X k data matrix, exact data reconstruction is possible
using iterative BP if 37" |pi| > b or 317 |qi] > k.
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@ The maximum degree of the coded symbols plays a key role in the
attainable blocklength of the array BP-XOR codes.

Let oi,i € {1,2,..., n} denote the maximum degree of the ith projection with
parameters (pi, gi). We have o; = min{[b/|pi|], [k/|qi|]} and hence
o = max,-{a,-}.
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PARAMETER SELECTIONS

@ The maximum degree of the coded symbols plays a key role in the
attainable blocklength of the array BP-XOR codes.

Let oi,i € {1,2,..., n} denote the maximum degree of the ith projection with
parameters (pj, gi). We have o; = min{[b/|pi||, [k/|qi|]} and hence
o = max,-{a,-}.

@ Depending on the choices of (p;, gi), the coding overhead and maximum
degree o can change.

CONSTRUCTION 3.3

Let us consider the following choice of coprime integers,

ql:]-aPIET:{* \‘H;IJ 7"'5717071727"'7 lrngl—‘} (6)

where ¥ is known as canonical enumeration of integers [11] that goes with the
name A007306 and satisfies ged(pi, gi) =1 for i =0,...,n— 1.

o Construction 3.3 satisfies Katz criterion and for b >> 1, we have o = k.
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For Mojette transform code with parameters as given in Construction 3.3, for

b > 1, we have A2 = 7
(b, )~ "2 =T = 1) 7

where r = k/n is the fixed rate of the array BP-XOR code.

o This overhead satisfies definition 2.2. Note k = o has the least constraint
on the code length for any MDS array BP-XOR code.
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OVERHEAD

For Mojette transform code with parameters as given in Construction 3.3, for

b > 1, we have A2 = 7
(b, )~ "2 =T = 1) 7

where r = k/n is the fixed rate of the array BP-XOR code.

o This overhead satisfies definition 2.2. Note k = o has the least constraint
on the code length for any MDS array BP-XOR code.

CONSTRUCTION 3.5

Let us consider the following choice of coprime integers for n projections,
di = ge > 07

pied={[-n+1] 0, -—3,-113,....[n=1], 44} (8)

where g. is a positive even number, and [.],,, rounds to the next biggest odd
integer of the argument, respectively.

o We can show that GCD(pi, g;) =1 and
k > o = maxi{min{[b/|pi[], Tk/|qil1}} = [k/qe] PR
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OVERHEAD

THEOREM

For Mojette transform code with parameters as given in construction 3.5, for
b> 1, we have

e(b, n) ~ “ZZJ ((k —1) <n - “‘/2"‘*1) +(b-1)qe + 1) ~1

where g. is a positive even number, and [.],,, rounds to the next biggest odd
integer of the argument, respectively.

o We can find the explicit upper bound for the blocklength n using the
construction 3.5.

ngk—l—%((k—l)(n—%)+(b—1)qe+1>—1 (9)

o Hard to visualize. Let us provide some numerical results.



NUMERICAL RESULTS

AMDS ARRAY BP-XOR CODE

@ Choose ge = 2, b = 10000, code rates r € {3/4,1/2}. asym denotes
AMDS array BP-XOR codes based on Mojette Transform.

Existance of rate 3/4 MDS Array BP-XOR Codes

4500 0
— Upper bound on n (classical)
4000 F30 bt ~_~"||— Upper bound on n (asym) g
\ Required n
3500 [20 [\A " :
3000 (10 .
10 20 30
2500 J
<
2000

1500

1000

500

0 500 1000 1500 2000



NUMERICAL RESULTS

RATE 1/2 AMDS ARRAY BP-XOR CODE

o Upper bounds on n as a function of k for b = 10000.

Existance of rate 1/2 MDS Array BP-XOR Codes

18000 o0
— Upper bound on n (classical)
16000 — Upper bound on n (asym) 1
Required n /
14000 = /
12000 /A
10 20 30 /
10000 |- /A
e /
8000 - / 4
6000 - =
4000 -
0 | I L
0 500 1000 1500 2000
k



ACHIEVABLE RAT

@ The upper bound on n depends on the coding overhead which is a
function of code rate.

@ For each assumed rate, we calculate the upper bound and then compute
the minimum code rate possible. i.e., region that lies above the curves are
possible ra’

o
®

Il
o

minimum rate possible (min_rate)

0.4
= = MDS array (k=10)
02 — — - AMDS array (k=10)
=== MDS array (k=1000)
ass_rate = min_rate
—— AMDS array (k=1000)
0 . . . . I I I

I I
0.1 02 03 04 05 06 07 08 09 1

assumed rate (ass_rate)
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NUMERICAL RESULTS

RESULTS

o As k gets large it becomes impossible to construct classical MDS array
BP-XOR codes with rate smaller than (almost) 1. (k = 10 to k = 1000 )

o By relaxing the exact MDS constraint, we can improve the region of
possibilities for better achievability.

o Note that these bounds can be quantified once the overhead expression is
available.

o Overhead is a function of the code construction process and parameters.



RESULT
CONCLUSIONS

CONCLUSION

o Array BP-XOR codes are attractive data protection schemes for
low-complexity and optimal reliability.

o Exact constructions have limitations on the maximum block length (so on
minimum rate) when the coding symbol degree is particularly lower than
the data size.

o This limitation can greatly be relaxed by extending the original optimal
class to asymptotically optimal class.

o Demonstrated a code construction based on discrete geometry that
satisfies all the requirements of AMDS array BP-XOR code class.

FuTuRE WORK: OTHER CONSTRUCTION METHODOLOGIES

o Conjecture: Zigzag codes can be an alternative way of constructing AMDS array
BP-XOR codes.
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